
SimBiology®

Reference

R2016a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimBiology® Reference
© COPYRIGHT 2005–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History

September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)
March 2007 Online only Rereleased for Version 2.1.1 (Release 2007a)
September 2007 Online only Rereleased for Version 2.1.2 (Release 2007b)
October 2007 Online only Updated for Version 2.2 (Release 2007b+)
March 2008 Online only Updated for Version 2.3 (Release 2008a)
October 2008 Online only Updated for Version 2.4 (Release 2008b)
March 2009 Online only Updated for Version 3.0 (Release 2009a)
September 2009 Online only Updated for Version 3.1 (Release 2009b)
March 2010 Online only Updated for Version 3.2 (Release 2010a)
September 2010 Online only Updated for Version 3.3 (Release 2010b)
April 2011 Online only Updated for Version 3.4 (Release 2011a)
September 2011 Online only Updated for Version 4.0 (Release 2011b)
March 2012 Online only Updated for Version 4.1 (Release 2012a)
September 2012 Online only Updated for Version 4.2 (Release 2012b)
March 2013 Online only Updated for Version 4.3 (Release 2013a)
September 2013 Online only Updated for Version 4.3.1 (Release 2013b)
March 2014 Online only Updated for Version 5.0 (Release 2014a)
October 2014 Online only Updated for Version 5.1 (Release 2014b)
March 2015 Online only Updated for Version 5.2 (Release 2015a)
September 2015 Online only Updated for Version 5.3 (Release 2015b)
March 2016 Online only Updated for Version 5.4 (Release 2016a)





v

Contents

Functions — Alphabetical List
1

Methods — Alphabetical List
2

Properties — Alphabetical List
3





1

Functions — Alphabetical List



1 Functions — Alphabetical List

1-2

groupedData
Create groupedData object

Syntax
grpData = groupedData

grpData = groupedData(tbl)

grpData = groupedData(tbl,groupVarName)

grpData = groupedData(tbl,groupVarName,independentVarName)

Description
grpData = groupedData creates an empty groupedData object.

grpData = groupedData(tbl) creates a groupedData object by copying a table
or dataset object tbl. The GroupVariableName and IndependentVariableName
properties of the grpData object are implicitly determined by looking
for the first case-insensitive match to a list of variable names of tbl
(tbl.Properties.VariableNames). For the grouping variable, the list of names is ID,
Group, I, and Run. For the independent variable, the list of names is Time, T, and IDV.
If there are no match, GroupVariableName and IndependentVariableName are set to
empty strings.

grpData = groupedData(tbl,groupVarName) sets the GroupVariableName
property of the grpData object to groupVarName. The IndependentVariableName
property is implicitly set as in the previous syntax.

grpData = groupedData(tbl,groupVarName,independentVarName)

additionally sets the IndependentVariableName property of the grpData object to
independentVarName.

Examples
Create a GroupedData Object from Dataset

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or



 groupedData

1-3

more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of
newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the sample data set.

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the properties.

grpData.Properties

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {}

             DimensionNames: {'Observations'  'Variables'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'TIME'  'DOSE'  'WEIGHT'  'APGAR'  'CONC'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'TIME'

GroupVariableName and IndpendentVariableName have been automatically
assigned to 'ID' and 'Time' respectively.

Input Arguments

tbl — Data table
table | dataset

Data table, specified as a table or dataset.



1 Functions — Alphabetical List

1-4

groupVarName — Grouping variable name
string

Grouping variable name, specified as a string. An empty string '' indicates there is no
group variable.

independentVarName — Independent variable name
string

Independent variable name, specified as a string. An empty string '' indicates there is
no independent variable.

Output Arguments

grpData — Grouped data
groupedData object

Grouped data, returned as a groupedData object.

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–
83.

See Also
groupedData object | sbiofit | sbiofitmixed | table



 sbioabstractkineticlaw

1-5

sbioabstractkineticlaw
Create kinetic law definition

Syntax

abstkineticlawObj = sbioabstractkineticlaw('Name')

abstkineticlawObj = sbioabstractkineticlaw('Name','Expression')

abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',

PropertyValue...)

Arguments

Name Enter a name for the kinetic law definition. Name must
be unique in the user-defined kinetic law library. Name is
referenced by kineticlawObj.

Expression The mathematical expression that defines the kinetic law.

Description

abstkineticlawObj = sbioabstractkineticlaw('Name') creates an abstract
kinetic law object, with the name Name and returns it to abstkineticlawObj. Use the
abstract kinetic law object to specify a kinetic law definition.

The kinetic law definition provides a mechanism for applying a specific rate law to
multiple reactions. It acts as a mapping template for the reaction rate. The kinetic
law definition defines a reaction rate expression, which is shown in the property
Expression, and the species and parameter variables used in the expression. The
species variables are defined in the SpeciesVariables property, and the parameter
variables are defined in the ParameterVariables property of the abstract kinetic law
object.

To use the kinetic law definition, you must add it to the user-defined library with the
sbioaddtolibrary function. To retrieve the kinetic law definitions from the user-



1 Functions — Alphabetical List

1-6

defined library, first create a root object using sbioroot, then use the command
get(rootObj.UserDefinedLibrary, 'KineticLaws').

abstkineticlawObj = sbioabstractkineticlaw('Name','Expression')

constructs a SimBiology® abstract kinetic law object, abstkineticlawObj with
the name 'Name' and with the expression 'Expression' and returns it to
abstkineticlawObj.

abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',

PropertyValue...) defines optional properties. The property name/property value
pairs can be in any format supported by the function set (for example, name-value string
pairs, structures, and name-value cell array pairs).

Additional abstkineticlawObj properties can be viewed with the get command.
abstkineticlawObj properties can be modified with the set command.

Note: If you use the sbioabstractkineticlaw constructor function to create an object
containing a reaction rate expression that is not continuous and differentiable, see
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” before
simulating your model.

Method Summary

Property Summary

Examples

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('ex_mylaw1', '(k1*s)/(k2+k1+s)');

2 Assign the parameter and species variables in the expression.

   set (abstkineticlawObj, 'SpeciesVariables', {'s'});

   set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new kinetic law definition to the user-defined library.



 sbioabstractkineticlaw

1-7

   sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You
can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

   Index:    Library:       Name:        Expression:

   1         UserDefined    ex_mylaw1    (k1*s)/(k2+k1+s)  

4 Use the new kinetic law definition when defining a reaction's kinetic law.

     modelObj = sbiomodel('cell');

     reactionObj = addreaction(modelObj, 'A + B <-> B + C');

     kineticlawObj = addkineticlaw(reactionObj, 'ex_mylaw1');

Note: Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in kineticlawObj to fully define the ReactionRate
of the reaction.

See Also
addkineticlaw | addparameter | addreaction | sbiomodel



1 Functions — Alphabetical List

1-8

sbioaccelerate
Prepare model object for accelerated simulations

Syntax

sbioaccelerate(modelObj)

sbioaccelerate(modelObj,optionObj)

sbioaccelerate(modelObj,csObj,dvObj)

sbioaccelerate(modelObj,csObj,variantObj,doseObj)

Description

sbioaccelerate(modelObj) prepares a model object for an accelerated simulation
using its active configuration set (configset), and, if available, active variants and active
doses. A SimBiology model can contain multiple configsets with only one being active at
any given time. The active configset contains the settings to use in model preparation for
acceleration.

For accelerated simulations, use sbioaccelerate before running sbiosimulate. You
must use the same model and configset for both functions.

Rerun sbioaccelerate, before calling sbiosimulate, if you modify this model, other
than:

• Changing the variants
• Changing values for the InitialAmount of species
• Changing the Capacity of compartments
• Changing the Value of parameters

Note: If you are using a SimFunction object for simulations, it automatically
accelerates the model on its first function evaluation. Hence it is not necessary to run
sbioaccelerate beforehand.



 sbioaccelerate

1-9

sbioaccelerate(modelObj,optionObj) uses an option object specified by
optionObj as one of the following:

• Configset object

• Variant object

• ScheduleDose object

• RepeatDose object

• array of doses or variants

Currently, a particular dose object can only be accelerated with a single model. You
cannot use the same dose object for multiple models to be accelerated. You must create a
new copy of the dose for each model.

sbioaccelerate(modelObj,csObj,dvObj) uses a configset object csObj and dose,
variant, or an array of doses or variants specified by dvObj. If csObj is set to [], then
the function uses the active configset object.

sbioaccelerate(modelObj,csObj,variantObj,doseObj) uses a configset object
csObj, variant object or variant array specified by variantObj and dose object or dose
array specified by doseObj.

Requirements:

• Microsoft® Visual Studio® 2010 run-time libraries must be available on any computer
running accelerated models generated using Microsoft Windows® SDK.

• If you plan to redistribute your accelerated models to other MATLAB® users, be sure
they have the same run-time libraries.

Examples
Prepare a Model for Accelerated Simulation

Load a SimBiology project, named lotka, that contains a model m1.

sbioloadproject('lotka','m1')

Prepare the model for accelerated simulation.

sbioaccelerate(m1);



1 Functions — Alphabetical List

1-10

Simulate the model using different initial amounts of species x.

x = sbioselect(m1,'type','species','name','x');

for i=1:5

 x.initialAmount = i;

 sd(i) = sbiosimulate(m1);

end

Plot the results.

sbioplot(sd);

Accelerate Simulation Using a User-Defined Configset Object

Load a sample SimBiology project.



 sbioaccelerate

1-11

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = addconfigset(m1,'newStopTimeConfigSet');

csObj.StopTime = 15;

Prepare the model for accelerated simulation using the new configset object.

sbioaccelerate(m1,csObj);

Simulate the model using the same configset object.

sim = sbiosimulate(m1,csObj);

sbioplot(sim);



1 Functions — Alphabetical List

1-12

Accelerate Simulation Using an Array of Dose Objects

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Increase the amount of species x by 100 molecules at 2 and 4 seconds by adding a
schedule dose.

dObj1 = adddose(m1,'d1','schedule');

dObj1.Amount = 100;

dObj1.AmountUnits = 'molecule';

dObj1.TimeUnits = 'second';

dObj1.Time = 2;



 sbioaccelerate

1-13

dObj1.TargetName = 'unnamed.x';

dObj2 = adddose(m1,'d2','schedule');

dObj2.Amount = 100;

dObj2.AmountUnits = 'molecule';

dObj2.TimeUnits = 'second';

dObj2.Time = 4;

dObj2.TargetName = 'unnamed.x';

Prepare the model for accelerated simulation using the array of both doses.

sbioaccelerate(m1,[dObj1,dObj2]);

Simulate the model using no dose or any subset of the dose array.

sim1 = sbiosimulate(m1);

sim2 = sbiosimulate(m1,dObj1);

sim3 = sbiosimulate(m1,dObj2);

sim4 = sbiosimulate(m1,[dObj1,dObj2]);

Plot the results.

sbioplot(sim1);



1 Functions — Alphabetical List

1-14

sbioplot(sim2);



 sbioaccelerate

1-15

sbioplot(sim3);



1 Functions — Alphabetical List

1-16

sbioplot(sim4);



 sbioaccelerate

1-17

Accelerate Simulation Using Configset and Dose Objects

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(m1,'default');

Increase the amount of species x by 100 molecules at 2 seconds by adding a schedule
dose.

dObj = adddose(m1,'d1','schedule');



1 Functions — Alphabetical List

1-18

dObj.Amount = 100;

dObj.AmountUnits = 'molecule';

dObj.TimeUnits = 'second';

dObj.Time = 2;

dObj.TargetName = 'unnamed.x';

Prepare the model for accelerated simulation using the default configset object and added
dose object.

sbioaccelerate(m1,defaultConfigSet,dObj);

Simulate the model using the same configset and dose objects.

sim = sbiosimulate(m1,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);



 sbioaccelerate

1-19

Accelerate Simulation Using Configset, Dose, and Variant Objects

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = m1.addconfigset('newStopTimeConfigSet');

csObj.StopTime = 15;

Increase the amount of species x by 100 molecules at 2 seconds by adding a schedule
dose.

dObj = adddose(m1,'d1','schedule');



1 Functions — Alphabetical List

1-20

dObj.Amount = 100;

dObj.AmountUnits = 'molecule';

dObj.TimeUnits = 'second';

dObj.Time = 2;

dObj.TargetName = 'unnamed.x';

Add a variant of species x using a different initial amount of 500 molecules.

vObj = addvariant(m1,'v1');

addcontent(vObj,{'species','x','InitialAmount',500});

Prepare the model for accelerated simulation using the configset, dose, and variant
objects. In this case, the third argument of sbioaccelerate must be the variant object.

sbioaccelerate(m1,csObj,vObj,dObj);

Simulate the model using the same configset, variant, and dose objects.

sim = sbiosimulate(m1,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);



 sbioaccelerate

1-21

Input Arguments

modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The model minimally needs
one reaction or rate rule to be accelerated for simulations.

optionObj — Option object
configset object | variant object or array of variant objects | dose object or array of dose
objects



1 Functions — Alphabetical List

1-22

Option object, specified as one of the following: configset object, variant object,
array of variant objects, scheduleDose object, repeatDose object, or array of dose
objects.

• When you accelerate the model using an array of dose objects, you can simulate the
model using any subset of the dose objects from the array.

• You can use any or no variant input arguments when running sbioaccelerate.

csObj — Configuration set object
configset object | []

Configuration set object, specified as a configset object that stores simulation-
specific information. When you specify csObj as[], sbioaccelerate uses the currently
active configset.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects | []

Dose or variant object, specified as one of the following: scheduleDose object,
repeatDose object, array of dose objects, variant object, or array of variant
objects.

• Use [] when you want to explicitly exclude any variant objects from the
sbioaccelerate function.

• When dvObj is a dose object, sbioaccelerate uses the specified dose object as well
as any active variant objects if available.

• When dvObj is a variant object, sbioaccelerate uses the specified variant object as
well as any active dose objects if available.

variantObj — Variant object
variant object or array of variant objects | []

Variant object, specified as a variant object or array of variant objects. Use [] when
you want to explicitly exclude any variant object from sbioaccelerate.

doseObj — Dose object
dose object or array of dose objects | []

Dose object, specified as a scheduleDose object, repeatDose object, or array
of dose objects. A dose object defines additions that are made to species amounts or



 sbioaccelerate

1-23

parameter values. Use [] when you want to explicitly exclude any dose objects from
sbioaccelerate.

See Also
sbiosimulate



1 Functions — Alphabetical List

1-24

sbioaddtolibrary
Add to user-defined library

Syntax

sbioaddtolibrary (abstkineticlawObj)

sbioaddtolibrary (unitObj)

sbioaddtolibrary (unitprefixObj)

Arguments

abstkineticlawObj Specify the abstract kinetic law object that holds
the kinetic law definition. The Name of the kinetic
law must be unique in the user-defined kinetic law
library. Name is referenced by kineticlawObj. For
more information about creating kineticlawObj, see
sbioabstractkineticlaw.

unitObj Specify the user-defined unit to add to the library. For
more information about creating unitObj, see sbiounit.

unitprefixObj Specify the user-defined unit prefix to add to the library.
For more information about creating unitprefixObj, see
sbiounitprefix.

Description

The function sbioaddtolibrary adds kinetic law definitions, units, and unit prefixes to
the user-defined library.

sbioaddtolibrary (abstkineticlawObj) adds the abstract kinetic law object
(abstkineticlawObj) to the user-defined library.

sbioaddtolibrary (unitObj) adds the user-defined unit (unitObj) to the user-
defined library.



 sbioaddtolibrary

1-25

sbioaddtolibrary (unitprefixObj) adds the user-defined unit prefix
(unitprefixObj) to the user-defined library.

The sbioaddtolibrary function adds any kinetic law definition, unit, or unit prefix
to the root object's UserDefinedLibrary property. These library components become
available automatically in future MATLAB sessions.

Use the kinetic law definitions in the built-in and user-defined library to construct a
kinetic law object with the method addkineticlaw.

To get a component of the built-in and user-defined libraries, use the
commands get(sbioroot, 'BuiltInLibrary') and (get(sbioroot,
'UserDefinedLibrary')).

To remove the library component from the user-defined library, use the function
sbioremovefromlibrary. You cannot remove a kinetic law definition being used by a
reaction.

Examples

This example shows how to create a kinetic law definition and add it to the user-defined
library.

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('ex_mylaw1', '(k1*s)/(k2+k1+s)');

2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, 'SpeciesVariables', {'s'});

set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

The function adds the kinetic law definition to the user-defined library. You can
verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array



1 Functions — Alphabetical List

1-26

Index:    Library:       Name:     Expression:

1         UserDefined    mylaw1    (k1*s)/(k2+k1+s)  

4 Use the new kinetic law definition when defining a reaction's kinetic law.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'A + B <-> B + C');

kineticlawObj = addkineticlaw(reactionObj, 'ex_mylaw1');

Note: Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in kineticlawObj to fully define the ReactionRate
of the reaction.

See Also
addkineticlaw | sbioabstractkineticlaw | sbioremovefromlibrary |
sbioroot | sbiounit | sbiounitprefix



 sbioconsmoiety

1-27

sbioconsmoiety
Find conserved moieties in SimBiology model

Syntax

[G, Sp] = sbioconsmoiety(modelObj)

[G, Sp] = sbioconsmoiety(modelObj, alg)

H = sbioconsmoiety(modelObj, alg,'p')

H = sbioconsmoiety(modelObj, alg,'p', FormatArg)

[SI, SD, L0, NR, ND] = sbioconsmoiety(modelObj,'link')

Arguments

G An m-by-n matrix, where m is the number of conserved quantities
found and n is the number of species in the model. Each row of G
specifies a linear combination of species whose rate of change over
time is zero.

Sp Cell array of species names that labels the columns of G.

If the species are in multiple compartments, species names
are qualified with the compartment name in the form
compartmentName.speciesName. For example, nucleus.DNA,
cytoplasm.mRNA.

modelObj Model object to be evaluated for conserved moieties.
alg Specify algorithm to use during evaluation of conserved moieties.

Valid values are 'qr', 'rreduce', or 'semipos'.
H Cell array of strings containing the conserved moieties.
p Prints the output to a cell array of strings.
FormatArg Specifies formatting for the output H. FormatArg should either

be a C-style format string, or a positive integer specifying the
maximum number of digits of precision used.

SI Cell array containing the names of independent species in the
model.



1 Functions — Alphabetical List

1-28

SD Cell array containing the names of dependent species in the
model.

L0 Link matrix relating SI and SD. The link matrix L0 satisfies
ND = L0*NR. For the 'link' functionality, species with their
BoundaryCondition or ConstantAmount properties set to true
are treated as having stoichiometry of zero in all reactions.

L0 is a sparse matrix. To convert it to a full matrix, use the full
function.

NR Reduced stoichiometry matrices containing one row for each
independent species. The concatenated matrix [NR;ND]  is
a row-permuted version of the full stoichiometry matrix of
modelObj.

NR is a sparse matrix. To convert it to a full matrix, use the full
function.

ND Reduced stoichiometry matrices containing one row for each
dependent species. The concatenated matrix [NR;ND] is a row-
permuted version of the full stoichiometry matrix of modelObj.

ND is a sparse matrix. To convert it to a full matrix, use the full
function.

Description

[G, Sp] = sbioconsmoiety(modelObj) calculates a complete set of linear
conservation relations for the species in the SimBiology model object modelObj.

sbioconsmoiety computes conservation relations by analyzing the structure of the
model object's stoichiometry matrix. Thus, sbioconsmoiety does not include species
that are governed by algebraic or rate rules.

[G, Sp] = sbioconsmoiety(modelObj, alg) provides an algorithm specification.
For alg, specify 'qr' , 'rreduce' , or 'semipos'.

• When you specify 'qr', sbioconsmoiety uses an algorithm based on QR
factorization. From a numerical standpoint, this is the most efficient and reliable
approach.



 sbioconsmoiety

1-29

• When you specify 'rreduce', sbioconsmoiety uses an algorithm based on row
reduction, which yields better numbers for smaller models. This is the default.

• When you specify 'semipos', sbioconsmoiety returns conservation relations
in which all the coefficients are greater than or equal to 0, permitting a more
transparent interpretation in terms of physical quantities.

For larger models, the QR-based method is recommended. For smaller models, row
reduction or the semipositive algorithm may be preferable. For row reduction and
QR factorization, the number of conservation relations returned equals the row rank
degeneracy of the model object's stoichiometry matrix. The semipositive algorithm may
return a different number of relations. Mathematically speaking, this algorithm returns
a generating set of vectors for the space of semipositive conservation relations.

H = sbioconsmoiety(modelObj, alg,'p') returns a cell array of strings H
containing the conserved quantities in modelObj.

H = sbioconsmoiety(modelObj, alg,'p', FormatArg) specifies formatting for
the output H. FormatArg should either be a C-style format string, or a positive integer
specifying the maximum number of digits of precision used.

[SI, SD, L0, NR, ND] = sbioconsmoiety(modelObj,'link') uses a QR-based
algorithm to compute information relevant to the dimensional reduction, via conservation
relations, of the reaction network in modelObj.

Examples

Example 1

This example shows conserved moieties in a cycle.

1 Create a model with a cycle. For convenience use arbitrary reaction rates, as this will
not affect the result.

modelObj = sbiomodel('cycle');

modelObj.addreaction('a -> b','ReactionRate','1');

modelObj.addreaction('b -> c','ReactionRate','b');

modelObj.addreaction('c -> a','ReactionRate','2*c');

2 Look for conserved moieties.

 [g sp] = sbioconsmoiety(modelObj)



1 Functions — Alphabetical List

1-30

g =

     1     1     1

sp = 

    'a'

    'b'

    'c'

Example 2

Explore semipositive conservation relations in the oscillator model.

modelObj = sbmlimport('oscillator');

 sbioconsmoiety(modelObj,'semipos','p')

 ans = 

    'pol + pol_OpA + pol_OpB + pol_OpC'

    'OpB + pol_OpB + pA_OpB1 + pA_OpB_pA + pA_OpB2'

    'OpA + pol_OpA + pC_OpA1 + pC_OpA2 + pC_OpA_pC'

    'OpC + pol_OpC + pB_OpC1 + pB_OpC2 + pB_OpC_pB'

More About
• “Conserved Moiety Determination”

See Also
getstoichmatrix



 sbioconvertunits

1-31

sbioconvertunits
Convert unit and unit value to new unit

Syntax

sbioconvertunits(Obj, 'unit')

Description

sbioconvertunits(Obj, 'unit') converts the current *Units property on
SimBiology object, Obj to the unit, unit. This function configures the *Units
property to unit and updates the corresponding value property. For example,
sbioconverunits on a speciesObj updates the InitialAmount property value and
the InitialAmountUnits property value.

Obj can be an array of SimBiology objects. Obj must be a SimBiology object that
contains a unit property. The SimBiology objects that contain a unit property are
compartment, parameter, and species objects. For example, if Obj is a species object
with InitialAmount configured to 1 and InitialAmountUnits configured to mole,
after the call to sbioconvertunits with unit specified as molecule, speciesObj
InitialAmount is 6.0221e23 and InitialAmountUnits is molecule.

Examples

Convert the units of the initial amount of glucose from molecule to mole.

1 Create the species 'glucose' and assign an initial amount of 23 molecule.

At the command prompt, type:
modelObj = sbiomodel('cell');

compObj = addcompartment(modelObj, 'C');

speciesObj = addspecies (compObj, 'glucose', 23, 'InitialAmountUnits', 'molecule')

SimBiology Species Array

   Index:    Compartment:    Name:      InitialAmount:    InitialAmountUnits:



1 Functions — Alphabetical List

1-32

   1         C               glucose    23                molecule

2 Convert the InitialAmountUnits of glucose from molecule to mole.

sbioconvertunits (speciesObj, 'mole')

3 Verify the conversion of units and InitialAmount value.

Units are converted from molecule to mole.

get (speciesObj, 'InitialAmountUnits')

ans =

mole

The InitialAmount value is changed.

get (speciesObj, 'InitialAmount')

ans =

  3.8192e-023

More About
• sbioshowunits

See Also
sbioshowunits



 sbiocopylibrary

1-33

sbiocopylibrary
Copy library to disk

Syntax

sbiocopylibrary ('kineticlaw','LibraryFileName')

sbiocopylibrary ('unit','LibraryFileName')

Description

sbiocopylibrary ('kineticlaw','LibraryFileName') copies all user-defined
kinetic law definitions to the file LibraryFileName.sbklib and places the copied file
in the current directory.

sbiocopylibrary ('unit','LibraryFileName') copies all user-defined units and
unit prefixes to the file LibraryFileName.sbulib.

To get the kinetic law definitions that are in the built-in or user-
defined libraries, first create a root object using sbioroot, then use the
commands get(rootObj.BuiltInLibrary, 'KineticLaws') or
get(rootObj.UserDefinedLibrary, 'KineticLaws').

To add a kinetic law definition to the user-defined library, use sbioaddtolibrary.

To add a unit to the user-defined library, use sbiounit followed by
sbioaddtolibrary. To add a unit prefix to the user-defined library, use
sbiounitprefix followed by sbioaddtolibrary.

Examples

Create a kinetic law definition, add it to the user-defined library, and then copy the user-
defined kinetic law library to a .sbklib file.

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('mylaw1', '(k1*s)/(k2+k1+s)');



1 Functions — Alphabetical List

1-34

2 Add the new a kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You
can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index:    Library:       Name:        Expression:

  1       UserDefined    mylaw1    (k1*s)/(k2+k1+s)  

3 Copy the user-defined kinetic law library.

sbiocopylibrary ('kineticlaw','myLibFile')

4 Verify with sbiowhos.

sbiowhos -kineticlaw myLibFile

See Also
sbioaddtolibrary | sbioabstractkineticlaw | sbioremovefromlibrary |
sbiounit | sbiounitprefix



 sbiodesktop

1-35

sbiodesktop
Open SimBiology desktop for modeling and simulation

Syntax

sbiodesktop

sbiodesktop(modelObj)

sbiodesktop(File)

Input Arguments

modelObj SimBiology model object or an array of model objects.
File String specifying a file name or path and file name of an sbproj file. If

you specify only a file name, that file must be on the MATLAB search
path or in the MATLAB Current Folder.

Description

sbiodesktop opens the SimBiology desktop, which lets you:

• Build a SimBiology model by representing reaction pathways and entering kinetic
data for the reactions.

• Import or export SimBiology models to and from the MATLAB workspace or from a
Systems Biology Markup Language (SBML) file.

• Modify an existing SimBiology model.
• Simulate a SimBiology model through individual or ensemble runs.
• View results from the simulation.
• Perform analysis tasks such as sensitivity analysis, parameter and species scans, and

calculation of conserved moieties.
• Create and/or modify user-defined units and unit prefixes.
• Create and/or modify user-defined kinetic laws.



1 Functions — Alphabetical List

1-36

sbiodesktop(modelObj) opens the SimBiology desktop with modelObj, a SimBiology
model object. If there is a project open in the SimBiology desktop, this command adds
modelObj to the project.

sbiodesktop(File) opens the project specified by File in the SimBiology desktop.
File is a string specifying a file name or path and file name of an sbproj file. If you
specify only a file name, that file must be on the MATLAB search path or in the
MATLAB Current Folder. If a project is open in the desktop, the software replaces it with
the new project, after prompting you to save any changes.

The Parent property of a SimBiology model object is set to the SimBiology root object.
The root object contains a list of model objects that are accessible from the MATLAB
command line and from the SimBiology desktop. Because both the command line and the
desktop point to the same model object in the Root object, changes you make to the
model at the command line are reflected in the desktop, and vice versa.

Note: The sbioreset command removes all models from the root object. Therefore, this
command also removes all models from the SimBiology desktop.

Examples

Create a SimBiology model in the MATLAB workspace, and then open the SimBiology
desktop with the model:

modelObj = sbiomodel('cell');

sbiodesktop(modelObj)

See Also
sbioroot | sbiofittool | simbiology



 sbiodose

1-37

sbiodose

Construct dose object

Syntax

doseObj = sbiodose('DoseName')

doseObj = sbiodose('DoseName', 'DoseType')

doseObj = sbiodose(...'PropertyName', PropertyValue...)

Inputs

DoseName Name of the dose object.
DoseType Selects which type of dose object to construct. Enter either

'schedule' or 'repeat'

• 'schedule'creates a ScheduleDose object and defines
the dose with a time array, amount array, and rate
array.

• 'repeat'creates a RepeatDose object and defines the
dose with a dose amount, number of dose repetitions, and
the time between doses.

Output Arguments

doseObj ScheduleDose or RepeatDose object.

Description

doseObj = sbiodose('DoseName') constructs a SimBiology RepeatDose object
(doseObj), assigns DoseName to the property Name, and assigns []to the property
Parent.



1 Functions — Alphabetical List

1-38

doseObj = sbiodose('DoseName', 'DoseType') constructs either a SimBiology
ScheduleDose object or RepeatDose object (doseObj).

doseObj = sbiodose(...'PropertyName', PropertyValue...) defines dose
object properties. You can enter the property name/property value pairs in any format
supported by the function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

You can view additional doseObj properties with the get command and modify
doseObj properties with the set command.

Examples

Increase Drug Concentration in a One-Compartment Model via First-order Dosing

This example shows how to set up a dosing regimen that follows the first-order
absorption kinetics.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is added to the body via the first-order
dosing represented by the reaction dose -> drug, with the absorption rate constant ka.
It is removed from the body via the first-order elimination represented by the reaction
drug -> null, with the elimination rate constant ke. This example shows how to set up
such a one-compartment model, the first-order absorption and elimination.

Create a One-compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the drug elimination by adding a reaction drug -> null to the model. The drug
species represents the total amount of drug in the compartment.

r1 = addreaction(m1,'drug -> null');

Note that a compartment and the species drug are automatically created, and drug is
added to the compartment. The null species is a reserved species that acts as a sink in
this reaction.



 sbiodose

1-39

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k2. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set up the First-order Dosing

Add a reaction that represents the drug absorption using the second species dose. It
represents an intermediate species that will be dosed directly and is required to set up
the first-order absorption kinetics.

r2 = addreaction(m1,'dose -> drug');

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
absorption to follow the first-order kinetics.

k2 = addkineticlaw(r2,'MassAction');

Define the absorption rate parameter ka and add it to the kinetic law.

p2 = addparameter(k2,'ka','Value',0.1,'ValueUnits','1/hour');

Specify the rate parameter ka as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for dose -> drug reaction.

k2.ParameterVariableNames = 'ka';

Suppose you want to increase the drug concentration in the system by administering a
series of doses: 250 mg three times a day (t.i.d) for two days. Specify the amount of the
dose (Amount), the time interval between each dose (Interval), and the total number
of doses (RepeatCount). You also need to set the Active property of the dose object to



1 Functions — Alphabetical List

1-40

true so that the dose will be applied to the model during simulation. RepeatCount was
set to 5, instead of 6 since it represents the number of doses after the first dose at the
default dose start time (d1.StartTime = 0).

d1 = sbiodose('d1','repeat');

d1.Amount = 250;

d1.AmountUnits = 'milligram';

d1.Interval = 8;

d1.TimeUnits = 'hour';

d1.RepeatCount = 5;

d1.Active = true;

Specify the target species of the dose object. The target must be the dose species, not the
drug species, so that the drug absorption follows the first-order kinetics.

d1.TargetName = 'dose';

Simulate the Model

Change the simulation stop time to 48 hours to match the dosing schedule.

cs = getconfigset(m1);

cs.StopTime = 48;

cs.TimeUnits = 'hour';

In addition, do not log the dose species data as you are mainly interested in monitoring
the drug species which is the drug concentration in the system. This makes visualizing
the species in a plot more convenient. To accomplish this, set the StatesToLog property
to include the species drug only.

cs.RuntimeOptions.StatesToLog = {'drug'};

Simulate the model using the dosing schedule defined by the |d1 |dose object.

[t,sd,species] = sbiosimulate(m1,d1);

Plot Results

Plot the concentration versus the time profile of the drug in the compartment.

plot(t,sd);

legend(species,'Location','NorthWest');

xlabel('Hours');



 sbiodose

1-41

ylabel('Drug Concentration');

Add a Series of Bolus Doses to a One-Compartment Model

This example shows how to add a series of bolus doses to one-compartment model.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-
order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the
monoexponential decline , where  is the drug concentration at time t, 



1 Functions — Alphabetical List

1-42

is the initial concentration, and ke is the elimination rate constant. This example shows
how to set up such a one-compartment model and administer a series of bolus doses,
namely 250 mg three times a day (tid) for two days.

Create a One-compartment Model

First create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and the reaction is added to the compartment.
The null species is a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set up a Series of Bolus Doses

Suppose you want to increase the drug concentration in the system by administering
a series of bolus doses: 250 mg three times a day (tid) for two days. Create a repeat
dose object. Specify the amount of the dose (Amount), the dose target, the time interval
between each dose (Interval), and the total number of doses (RepeatCount). You also
need to set the Active property of the dose object to true so that the dose is applied to
the model during simulation.

d1 = sbiodose('d1','repeat');



 sbiodose

1-43

d1.Amount = 250;

d1.AmountUnits = 'milligram';

d1.TargetName = 'drug';

d1.Interval = 8;

d1.TimeUnits = 'hour';

d1.RepeatCount = 5;

d1.Active = true;

RepeatCount was set to 5, instead of 6 since it represents the number of doses after the
first dose at the default dose start time (d1.StartTime = 0).

Simulate the Model

Change the simulation stop time to 48 hours to match the dosing schedule defined by the
d1 dose object.

cs = getconfigset(m1);

cs.StopTime = 48;

cs.TimeUnits = 'hour';

[t,sd,species] = sbiosimulate(m1,d1);

Plot Results

Plot the concentration versus the time profile of the drug in the system.

plot(t,sd);

legend(species);

xlabel('Hours');

ylabel('Drug Concentration');



1 Functions — Alphabetical List

1-44

Increase Drug Concentration in a One-Compartment Model via Zero-order Dosing

This example shows how to set up a dosing regimen that follows the zero-order
absorption kinetics.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-
order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the
monoexponential decline , where  is the drug concentration at time t, 
is the initial concentration, and ke is the elimination rate constant. This example shows



 sbiodose

1-45

how to set up such a one-compartment model and increase the drug concentration in the
compartment via the zero-order absorption that takes 25 hours to administer the total
dose amount of 250 mg.

Create a One-compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and added to the compartment. The null
species is a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set up Zero-order Dosing

To set up zero-order dosing, first create a zero-order duration parameter p2 that
represents the time it takes to administer a dose. Next, specify the amount of the dose
(Amount), the dose target (TargetName), and the name of the zero-order duration
parameter (DurationParameterName). You also need to set the Active property of the
dose object to true so that the dose is applied to the model during simulation.

p2 = addparameter(m1,'duration','Value',25,'ValueUnits','hour');



1 Functions — Alphabetical List

1-46

d1 = sbiodose('d1');

d1.Amount = 250;

d1.AmountUnits = 'milligram';

d1.TargetName = 'drug';

d1.DurationParameterName = 'duration'; %Name of the duration parameter |p2|

d1.Active = true;

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time profile. Apply the
dosing schedule defined by d1 to the model during simulation.

cs = getconfigset(m1);

cs.StopTime = 48;

cs.TimeUnits = 'hour';

[t,sd,species] = sbiosimulate(m1,d1);

Plot results

Plot the concentration versus the time profile of the drug in the compartment.

plot(t,sd);

legend(species);

xlabel('Hours');

ylabel('Drug Concentration');



 sbiodose

1-47

Add an Infusion Dose to a One-Compartment Model

This example shows how to add a constant-rate infusion dose to one-compartment model.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-
order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the
monoexponential decline , where  is the drug concentration at time t, 
is the initial concentration, and ke is the elimination rate constant. This example shows



1 Functions — Alphabetical List

1-48

how to set up such a one-compartment model and add an infusion dose at a constant rate
of 10 mg/hour for the total dose amount of 250 mg.

Create a One-compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and added to the compartment. The null
species is a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set up an Infusion Dose

Specify the amount of the dose (Amount), the dose target (TargetName), and the infusion
rate (Rate). You also need to set the Active property of the dose object to true so that
the dose is applied to the model during simulation.

d1 = sbiodose('d1');

d1.Amount = 250;

d1.TargetName = 'drug';

d1.Rate = 10;

d1.RateUnits = 'milligram/hour';

d1.Active = true;



 sbiodose

1-49

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time course. Apply the
dosing schedule defined by d1 to the model during simulation.

cs = getconfigset(m1);

cs.StopTime = 48;

cs.TimeUnits = 'hour';

[t,sd,species] = sbiosimulate(m1,d1);

Plot results

Plot the concentration versus the time profile of the drug in the system.

plot(t,sd);

legend(species);

xlabel('Hours');

ylabel('Drug Concentration');



1 Functions — Alphabetical List

1-50

More About
• Model object

• ScheduleDose object

• RepeatDose object

See Also
adddose | getdose | removedose | copyobj | get | set



 sbioensembleplot

1-51

sbioensembleplot
Show results of ensemble run using 2-D or 3-D plots

Syntax

sbioensembleplot(simdataObj)

sbioensembleplot(simdataObj, Names)

sbioensembleplot(simdataObj, Names, Time)

FH = sbioensembleplot(simdataObj, Names)

FH = sbioensembleplot(simdataObj, Names, Time)

Arguments

simdataObj An object that contains simulation data. You can generate a
simdataObj object using the function sbioensemblerun. All
elements of simdataObj must contain data for the same states in
the same model.

Names Either a string or a cell array of strings. Names may include
qualified names such as 'CompartmentName.SpeciesName'
or 'ReactionName.ParameterName' to resolve ambiguities.
Specifying {} for Names plots data for all states contained in
simdataObj.

Time A numeric scalar value. If the specified Time is not an element
of the time vectors in simdataObj, then the function resamples
simdataObj as necessary using linear interpolation.

FH Array of handles to figure windows.

Description

sbioensembleplot(simdataObj) shows a 3-D shaded plot of time-varying
distribution of all logged states in the SimData array simdataObj. The
sbioensemblerun function plots an approximate distribution created by fitting a
normal distribution to the data at every time step.



1 Functions — Alphabetical List

1-52

sbioensembleplot(simdataObj, Names) plots the distribution for the data specified
by Names.

sbioensembleplot(simdataObj, Names, Time) plots a 2-D histogram of the actual
data of the ensemble distribution of the states specified by Names at the particular time
point Time.

FH = sbioensembleplot(simdataObj, Names) returns an array of handles FH, to
the figure window for the 3-D distribution plot.

FH = sbioensembleplot(simdataObj, Names, Time) returns an array of handles
FH, to the figure window for the 2-D histograms.

Examples
This example shows how to plot data from an ensemble run without interpolation.

1 The project file, radiodecay.sbproj, contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay.sbproj','m1');

2 Change the solver of the active configuration set to be ssa. Also, adjust the
LogDecimation property on the SolverOptions property of the configuration set
to reduce the size of the data generated.

cs = getconfigset(m1, 'active');

set(cs, 'SolverType', 'ssa');

so = get(cs, 'SolverOptions');

set(so, 'LogDecimation', 10);

3 Perform an ensemble of 20 runs with no interpolation.

simdataObj = sbioensemblerun(m1, 20);

4 Create a 2-D distribution plot of the species 'z' at time = 1.0.

FH1 = sbioensembleplot(simdataObj, 'z', 1.0);

5 Create a 3-D shaded plot of both species.

FH2 = sbioensembleplot(simdataObj, {'x','z'});

See Also
sbioensemblerun | sbioensemblestats | sbiomodel



 sbioensemblerun

1-53

sbioensemblerun

Multiple stochastic ensemble runs of SimBiology model

Syntax

simdataObj = sbioensemblerun(modelObj, Numruns)

simdataObj = sbioensemblerun(modelObj, Numruns, Interpolation)

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj)

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

Interpolation)

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj)

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj,

Interpolation)

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj)

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj, Interpolation)

Arguments

simdataObj An array of SimData objects containing simulation data
generated by sbioensemblerun. All elements of simdataObj
contain data for the same states in the same model.

modelObj Model object to be simulated.
Numruns Integer scalar representing the number of stochastic runs to

make.
Interpolation String variable denoting the interpolation scheme to be used

if data should be interpolated to get a consistent time vector.
Valid values are 'linear' (linear interpolation), 'zoh' (zero-
order hold), or 'off' (no interpolation). Default is 'off'. If
interpolation is on, the data is interpolated to match the time
vector with the smallest simulation stop time.



1 Functions — Alphabetical List

1-54

configsetObj Specify the configuration set object to use in the ensemble
simulation. For more information about configuration sets, see
Configset object.

variantObj Specify the variant object to apply to the model during the
ensemble simulation. For more information about variant objects,
see Variant object.

Description

simdataObj = sbioensemblerun(modelObj, Numruns) performs a stochastic
ensemble run of the SimBiology model object (modelObj), and returns the results
in simdataObj, an array of SimData objects. The active configset and the active
variants are used during simulation and are saved in the output, SimData object
(simdataObj).

sbioensemblerun uses the settings in the active configset on the model object
(modelObj) to perform the repeated simulation runs. The SolverType property of
the active configset must be set to one of the stochastic solvers: 'ssa', 'expltau', or
'impltau'. sbioensemblerun generates an error if the SolverType property is set to
any of the deterministic (ODE) solvers.

simdataObj = sbioensemblerun(modelObj, Numruns, Interpolation)

performs a stochastic ensemble run of a model object (modelObj), and interpolates the
results of the ensemble run onto a common time vector using the interpolation scheme
(Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj) performs
an ensemble run of a model object (modelObj), using the specified configuration set
(configsetObj).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

Interpolation) performs an ensemble run of a model object (modelObj), using the
specified configuration set (configsetObj), and interpolates the results of the ensemble
run onto a common time vector using the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj) performs an
ensemble run of a model object (modelObj), using the variant object or array of variant
objects (variantObj).



 sbioensemblerun

1-55

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj,

Interpolation) performs an ensemble run of a model object (modelObj), using
the variant object or array of variant objects (variantObj), and interpolates the
results of the ensemble run onto a common time vector using the interpolation scheme
(Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj) performs an ensemble run of a model object (modelObj), using the
configuration set (configsetObj), and the variant object or array of variant objects
(variantObj). If the configuration set object (configsetObj) is empty, the active
configset on the model is used for simulation. If the variant object (variantObj) is
empty, then no variant (not even the active variants in the model) is used for the
simulation.

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj, Interpolation) performs an ensemble run of a model object
(modelObj), using the configuration set (configsetObj), and the variant object or array
of variant objects (variantObj), and interpolates the results of the ensemble run onto a
common time vector using the interpolation scheme (Interpolation).

Examples

This example shows how to perform an ensemble run and generate a 2-D distribution
plot.

1 The project file, radiodecay.sbproj, contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay.sbproj','m1');

2 Change the solver of the active configset to be ssa. Also, adjust the LogDecimation
property on the SolverOptions property of the configuration set.

cs = getconfigset(m1, 'active');

set(cs, 'SolverType', 'ssa');

so = get(cs, 'SolverOptions');

set(so, 'LogDecimation', 10);

Tip The LogDecimation property lets you define how often the simulation data is
recorded as output. If your model has high concentrations or amounts of species, or a



1 Functions — Alphabetical List

1-56

long simulation time (for example, 600s), you can record simulation data less often
to manage the amount of data generated. Be aware that by doing so you might miss
some transitions if your model is very dynamic. Try setting LogDecimation to 10 or
more.

3 Perform an ensemble of 20 runs with linear interpolation to get a consistent time
vector.

simdata = sbioensemblerun(m1, 20, 'linear');

4 Create a 2-D distribution plot of the species 'z' at a time = 1.0.

FH = sbioensembleplot(simdata, 'z', 1.0);

See Also
addconfigset | getconfigset | sbioensemblestats | sbioensembleplot |
setactiveconfigset | SimData object



 sbioensemblestats

1-57

sbioensemblestats

Get statistics from ensemble run data

Syntax

[t,m] = sbioensemblestats(simDataObj)

[t,m,v] = sbioensemblestats(simDataObj)

[t,m,v,n] = sbioensemblestats(simDataObj)

[t,m,v,n] = sbioensemblestats(simDataObj,names)

[t,m,v,n] = sbioensemblestats(simDataObj,names,interpolation)

Arguments

t Column vector of time points
m Matrix of mean values from the ensemble data. The number of

rows in m is the length of the time vector t and the number of
columns is equal to the number of species.

simDataObj A cell array of SimData objects, where each SimData object holds
data for a separate simulation run. All elements of simDataObj
must contain data for the same states in the same model. When
the time vectors of the elements of simDataObj are not identical,
simDataObj is first resampled onto a common time vector (see
interpolation below).

v Matrix of variance obtained from the ensemble data. v has the
same dimensions as m.

n Cell array of strings for the quantity names whose mean and
variance are returned in m and v, respectively. The number of
elements in n is the same as the number of columns of m and v.
The order of names in n corresponds to the order of columns of m
and v.

names String or cell array of strings. names may include qualified
names such as 'CompartmentName.SpeciesName' or
'ReactionName.ParameterName' to resolve ambiguities. If



1 Functions — Alphabetical List

1-58

you specify empty {} for names, sbioensemblestats returns
statistics on all time courses contained in simDataObj.

interpolation String denoting the interpolation method to use for resampling of
the data onto a common time vector with the smallest simulation
stop time. See resample for a list of interpolation methods.
Default is 'linear'.

Description

[t,m] = sbioensemblestats(simDataObj) computes the time-dependent ensemble
mean m of the ensemble data simDataObj. If the time vectors of the ensemble data
are not identical, by default, the function uses the 'linear' interpolation method to
resample the data onto the common time vector. See resample for a list of interpolation
methods.

[t,m,v] = sbioensemblestats(simDataObj) also returns the variance v for the
ensemble run data simDataObj.

[t,m,v,n] = sbioensemblestats(simDataObj) also returns the names of
quantities n corresponding to the mean m and variance v columns. Each column of m or v
describes the ensemble mean or variance of a quantity (or state) as a function of time.

[t,m,v,n] = sbioensemblestats(simDataObj,names) computes statistics only for
the quantities specified by names.

[t,m,v,n] = sbioensemblestats(simDataObj,names,interpolation) uses
the interpolation method interpolation to resample the simulation data to have
a consistent time vector. If the time vectors of the ensemble data are not identical
and if you do not specify any interpolation method, the function uses the 'linear'
interpolation method by default.

Examples

The project file, radiodecay.sbproj, contains a model stored in a variable called m1.
Load m1 into the MATLAB workspace.

1 Load a SimBiology model m1 from a SimBiology project file.



 sbioensemblestats

1-59

sbioloadproject('radiodecay.sbproj','m1');

2 Change the solver of the active configuration set to be ssa. Also, adjust the
LogDecimation property on the SolverOptions property of the configuration set.

cs = getconfigset(m1, 'active');

set(cs, 'SolverType', 'ssa');

so = get(cs, 'SolverOptions');

set(so, 'LogDecimation', 10);

3 Perform an ensemble of 20 runs with no interpolation.

simDataObj = sbioensemblerun(m1, 20);

4 Get ensemble statistics for all species using the default interpolation method.

[T,M,V] = sbioensemblestats(simDataObj);

5 Get ensemble statistics for a specific species using the default interpolation scheme.

[T2,M2,V2] = sbioensemblestats(simDataObj, {'z'});

See Also
sbioensemblerun | sbioensembleplot | sbiomodel



1 Functions — Alphabetical List

1-60

sbiofit
Perform nonlinear least-squares regression

Compatibility

Statistics and Machine Learning Toolbox™, Optimization Toolbox™, and Global
Optimization Toolbox are recommended for this function.

Syntax

fitResults = sbiofit(sm,grpData,responseMap,estiminfo)

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing)

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,

functionName)

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,

functionName,options)

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,

functionName,options,variants)

fitResults = sbiofit(_,Name,Value)

[fitResults,simdata] = sbiofit(_)

Description

fitResults = sbiofit(sm,grpData,responseMap,estiminfo) estimates
parameters of a SimBiology model sm using nonlinear least-squares regression.

grpData is a groupedData object specifying the data to fit. responseMap is a string
or cell array of strings that maps model components to response data in grpData.
estimatedInfo is an estimatedInfo object that defines the estimated parameters
in the model sm. fitResults is a OptimResults object or NLINResults object or
a vector of these objects.

sbiofit uses the first available estimation function among the following: lsqnonlin
(Optimization Toolbox required), nlinfit (Statistics and Machine Learning Toolbox
required), or fminsearch.



 sbiofit

1-61

By default, each group in grpData is fit separately, resulting in group-specific parameter
estimates. If the model contains active doses and variants, they are applied during the
simulation.

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing) uses the
dosing information specified by a matrix of SimBiology dose objects dosing instead of
using the active doses of the model sm if there is any.

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,

functionName) uses the estimation function specified by functionName. If the
specified function is unavailable, a warning is issued and the first available default
function is used.

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,

functionName,options) uses the additional options specified by options for the
function functionName.

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,

functionName,options,variants) applies variant objects specified as variants
instead of using any active variants of the model.

fitResults = sbiofit(_,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

[fitResults,simdata] = sbiofit(_) also returns a vector of SimData objects
simdata using any of the input arguments in the previous syntaxes.

Note:

• sbiofit unifies sbionlinfit and sbioparamestim estimation functions. Use
sbiofit to perform nonlinear least-squares regression.

• sbiofit simulates the model using a SimFunction object, which automatically
accelerates simulations by default. Hence it is not necessary to run sbioaccelerate
before you call sbiofit.



1 Functions — Alphabetical List

1-62

Examples

Fit a One-Compartment Model to an Individual's PK Profile

Background

This example shows how to fit an individual's PK profile data to one-compartment model
and estimate pharmacokinetic parameters.

Suppose you have drug plasma concentration data from an individual and want to
estimate the volume of the central compartment and the clearance. Assume the drug
concentration versus the time profile follows the monoexponential decline ,
where  is the drug concentration at time t,  is the initial concentration, and  is
the elimination rate constant that depends on the clearance and volume of the central
compartment .

The synthetic data in this example was generated using the following model and
parameters:

• One-compartment model with bolus dosing and first-order elimination
• Volume of the central compartment (Central) = 1.70 liter
• Clearance parameter (Cl_Central) = 0.55 liter/hour
• Constant error model

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time
course of the plasma concentration of an individual after an intravenous bolus
administration measured at 13 different time points. The variable units for Time and
Conc are hour and milligram/liter, respectively.

clear all

load(fullfile(matlabroot,'examples','simbio','data15.mat'))

plot(data.Time,data.Conc,'b+')

xlabel('Time');

ylabel('Drug Concentration');



 sbiofit

1-63

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for
the fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the Time
and Conc variables. The units are optional and only required for the UnitConversion
feature, which automatically converts matching physical quantities to one consistent unit
system.

gData = groupedData(data);

gData.Properties.VariableUnits = {'hour','milligram/liter'};

gData.Properties



1 Functions — Alphabetical List

1-64

groupedData automatically set the name of the IndependentVariableName property
to the Time variable of the data.

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {'hour'  'milligram/liter'}

             DimensionNames: {'Row'  'Variable'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'Time'  'Conc'}

          GroupVariableName: ''

    IndependentVariableName: 'Time'

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and
first-order elimination where the elimination rate depends on the clearance and volume
of the central compartment. Use the configset object to turn on unit conversion.

pkmd                    = PKModelDesign;

pkc1                    = addCompartment(pkmd,'Central');

pkc1.DosingType         = 'Bolus';

pkc1.EliminationType    = 'linear-clearance';

pkc1.HasResponseVariable = true;

model                   = construct(pkmd);

configset               = getconfigset(model);

configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models”.

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up
different dosing schedules, see “Doses”.

dose                = sbiodose('dose');

dose.TargetName     = 'Drug_Central';

dose.StartTime      = 0;

dose.Amount         = 10;



 sbiofit

1-65

dose.AmountUnits    = 'milligram';

dose.TimeUnits      = 'hour';

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data
corresponds to the Drug_Central species in the model. Therefore, map the data to
Drug_Central as follows.

responseMap = {'Drug_Central = Conc'};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central)
and the clearance rate (Cl_Central). In this case, specify log-transformation for these
biological parameters since they are constrained to be positive. The estimatedInfo
object lets you specify parameter transforms, initial values, and parameter bounds
(optional).

paramsToEstimate    = {'log(Central)','log(Cl_Central)'};

estimatedParams     = estimatedInfo(paramsToEstimate,'InitialValue',[1 1]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response
data, parameters to estimate, and dosing, use sbiofit to estimate parameters.
The default estimation function that sbiofit uses will change depending on which
toolboxes are available. To see which function was used during fitting, check the
EstimationFunction property of the corresponding results object.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that
were used to generate the data. You may also try different error models to see if they
could further improve the parameter estimates.

fitConst.ParameterEstimates

plot(fitConst);

ans = 



1 Functions — Alphabetical List

1-66

        Name        Estimate    StandardError

    ____________    ________    _____________

    'Central'        1.6993     0.034821     

    'Cl_Central'    0.53358      0.01968     

Use Different Error Models

Try three other supported error models (proportional, combination of constant and
proportional error models, and exponential).

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...

                      'ErrorModel','proportional');



 sbiofit

1-67

fitExp  = sbiofit(model,gData,responseMap,estimatedParams,dose,...

                      'ErrorModel','exponential');

fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...

                      'ErrorModel','combined');

Compare Information Criteria for Model Selection

Compare the loglikelihood, AIC, and BIC values of each model to see which eror model
best fits the data. A larger likelihood value indicates the corresponding model fits the
model better. For AIC and BIC, the smaller values are better.

allResults = [fitConst,fitProp,fitExp,fitComb];

Error_Model = cell(4,1);

LogLikelihood = zeros(4,1);

AIC = zeros(4,1);

BIC = zeros(4,1);

t = table(Error_Model,LogLikelihood,AIC,BIC);

for i = 1:height(t)

    t{i,1} = {allResults(i).ErrorModelInfo.ErrorModel};

    t{i,2} = allResults(i).LogLikelihood;

    t{i,3} = allResults(i).AIC;

    t{i,4} = allResults(i).BIC;

end

t

t = 

     Error_Model      LogLikelihood      AIC        BIC  

    ______________    _____________    _______    _______

    [constant    ]     3.9866          -3.9732    -2.8433

    [proportional]    -3.8257           11.651     12.781

    [exponential ]     1.1984           1.6032     2.7331

    [combined    ]     3.9123          -3.8246    -2.6947

Based on the information criteria, the constant error model fits the data best since it has
the largest loglikelihood value and the smallest AIC and BIC.

Display Estimated Parameter Values

Show the estimated parameter values of each error model.

allResults              = [fitConst,fitProp,fitExp,fitComb];



1 Functions — Alphabetical List

1-68

Error_Model             = cell(4,1);

Estimated_Central       = zeros(4,1);

Estimated_Cl_Central    = zeros(4,1);

t = table(Error_Model,Estimated_Central,Estimated_Cl_Central);

for i = 1:height(t)

    t{i,1} = {allResults(i).ErrorModelInfo.ErrorModel};

    t{i,2} = allResults(i).ParameterEstimates.Estimate(1);

    t{i,3} = allResults(i).ParameterEstimates.Estimate(2);

end

t

t = 

     Error_Model      Estimated_Central    Estimated_Cl_Central

    ______________    _________________    ____________________

    [constant    ]    1.6993               0.53358             

    [proportional]    1.8774               0.51145             

    [exponential ]    1.7872               0.51701             

    [combined    ]       1.7                0.5326             

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central
compartment and clearance parameter of an individual, by fitting the PK profile data
to one-compartment model. You compared the information criteria of each model and
estimated parameter values of different error models to see which model best explained
the data. Final fitted results suggested both the constant and combined error models
provided the closest estimates to the parameter values used to generate the data.
However, the constant error model is a better model as indicated by the loglikelihood,
AIC, and BIC information criteria.

Fit a Two-Compartment Model to PK Profiles of Multiple Individuals

This example shows how to estimate pharmacokinetic parameters of multiple individuals
using a two-compartment model.

Suppose you have drug plasma concentration data from three individuals that you
want to use to estimate corresponding pharmacokinetic parameters, namely the volume
of central and peripheral compartment (Central, Peripheral), the clearance rate
(Cl_Central), and intercompartmental clearance (Q12). Assume the drug concentration



 sbiofit

1-69

versus the time profile follows the biexponential decline C Ae Bet
at bt

= +
- - , where Ct

is the drug concentration at time t, a and b are slopes for corresponding exponential
declines.

The synthetic data set contains drug plasma concentration data measured in both central
and peripheral compartments. The data was generated using a two-compartment model
with an infusion dose and first-order elimination. These parameters were used for each
individual.

 Central Peripheral Q12 Cl_Central

Individual 1 1.90 0.68 0.24 0.57
Individual 2 2.10 6.05 0.36 0.95
Individual 3 1.70 4.21 0.46 0.95

The data is stored as a table with variables ID, Time, CentralConc, and
PeripheralConc. It represents the time course of plasma concentrations measured
at eight different time points for both central and peripheral compartments after an
infusion dose.

clear all

load(fullfile(matlabroot,'examples','simbio','data10_32R.mat'))

Convert the data set to a groupedData object which is the required data format for
the fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the ID,
Time, CentralConc, and PeripheralConc variables. The units are optional and only
required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

gData = groupedData(data);

gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};

gData.Properties

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {1x4 cell}

             DimensionNames: {'Row'  'Variable'}



1 Functions — Alphabetical List

1-70

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'Time'  'CentralConc'  'PeripheralConc'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'

Create a trellis plot that shows the PK profiles of three individuals.

sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'});

Use the built-in PK library to construct a two-compartment model with infusion dosing
and first-order elimination where the elimination rate depends on the clearance and
volume of central compartment. Use the configset object to turn on unit conversion.



 sbiofit

1-71

pkmd                 = PKModelDesign;

pkc1                 = addCompartment(pkmd,'Central');

pkc1.DosingType      = 'Infusion';

pkc1.EliminationType = 'linear-clearance';

pkc1.HasResponseVariable = true;

pkc2                 = addCompartment(pkmd,'Peripheral');

model                = construct(pkmd);

configset            = getconfigset(model);

configset.CompileOptions.UnitConversion = true;

Assume every individual receives an infusion dose at time = 0, with a total infusion
amount of 100 mg at a rate of 50 mg/hour. For details on setting up different dosing
strategies, see “Doses”.

dose             = sbiodose('dose','TargetName','Drug_Central');

dose.StartTime   = 0;

dose.Amount      = 100;

dose.Rate        = 50;

dose.AmountUnits = 'milligram';

dose.TimeUnits   = 'hour';

dose.RateUnits   = 'milligram/hour';

The data contains measured plasma concentrations in the central and peripheral
compartments. Map these variables to the appropriate model species, which are
Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

The parameters to estimate in this model are the volumes of central and peripheral
compartments (Central and Peripheral), intercompartmental clearance Q12, and
clearance rate Cl_Central. In this case, specify log-transform for Central and
Peripheral since they are constrained to be positive. The estimatedInfo object lets
you specify parameter transforms, initial values, and parameter bounds (optional).

paramsToEstimate   = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};

estimatedParam     = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Fit the model to all of the data pooled together, that is, estimate one set of parameters for
all individuals. The default estimation method that sbiofit uses will change depending
on which toolboxes are available. To see which estimation function sbiofit used for the
fitting, check the EstimationFunction property of the corresponding results object.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true)



1 Functions — Alphabetical List

1-72

pooledFit = 

  OptimResults with properties:

                   ExitFlag: 3

                     Output: [1x1 struct]

                  GroupName: []

                       Beta: [4x3 table]

         ParameterEstimates: [4x3 table]

                          J: [24x4x2 double]

                       COVB: [4x4 double]

           CovarianceMatrix: [4x4 double]

                          R: [24x2 double]

                        MSE: 6.6220

                        SSE: 291.3688

                    Weights: []

              LogLikelihood: -111.3904

                        AIC: 230.7808

                        BIC: 238.2656

                        DFE: 44

    EstimatedParameterNames: {'Central'  'Peripheral'  'Q12'  'Cl_Central'}

             ErrorModelInfo: [1x3 table]

         EstimationFunction: 'lsqnonlin'

Plot the fitted results versus the original data. Although three separate plots were
generated, the data was fitted using the same set of parameters (that is, all three
individuals had the same fitted line).

plot(pooledFit);



 sbiofit

1-73

Estimate one set of parameters for each individual and see if there is any improvement
in the parameter estimates. In this example, since there are three individuals, three sets
of parameters are estimated.

unpooledFit =  sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Plot the fitted results versus the original data. Each individual was fitted differently
(that is, each fitted line is unique to each individual) and each line appeared to fit well to
individual data.

plot(unpooledFit);



1 Functions — Alphabetical List

1-74

Display the fitted results of the first individual. The MSE was lower than that of the
pooled fit. This is also true for the other two individuals.

unpooledFit(1)

ans = 

  OptimResults with properties:

                   ExitFlag: 3

                     Output: [1x1 struct]

                  GroupName: 1

                       Beta: [4x3 table]



 sbiofit

1-75

         ParameterEstimates: [4x3 table]

                          J: [8x4x2 double]

                       COVB: [4x4 double]

           CovarianceMatrix: [4x4 double]

                          R: [8x2 double]

                        MSE: 2.1380

                        SSE: 25.6559

                    Weights: []

              LogLikelihood: -26.4805

                        AIC: 60.9610

                        BIC: 64.0514

                        DFE: 12

    EstimatedParameterNames: {'Central'  'Peripheral'  'Q12'  'Cl_Central'}

             ErrorModelInfo: [1x3 table]

         EstimationFunction: 'lsqnonlin'

Generate a plot of the residuals over time to compare the pooled and unpooled fit
results. The figure indicates unpooled fit residuals are smaller than those of pooled fit
as expected. In addition to comparing residuals, other rigorous crieteria can be used to
compare the fitted results.

t = [gData.Time;gData.Time];

res_pooled = vertcat(pooledFit.R);

res_pooled = res_pooled(:);

res_unpooled = vertcat(unpooledFit.R);

res_unpooled = res_unpooled(:);

plot(t,res_pooled,'o','MarkerFaceColor','w','markerEdgeColor','b')

hold on

plot(t,res_unpooled,'o','MarkerFaceColor','b','markerEdgeColor','b')

refl = refline(0,0); % A reference line representing a zero residual

title('Residuals versus Time');

xlabel('Time');

ylabel('Residuals');

legend({'Pooled','Unpooled'});



1 Functions — Alphabetical List

1-76

This example showed how to perform pooled and unpooled estimations using sbiofit.
As illustrated, the unpooled fit accounts for variations due to the specific subjects in the
study, and, in this case, the model fits better to the data. However, the pooled fit returns
population-wide parameters. If you want to estimate population-wide parameters while
considering individual variations, use sbiofitmixed.

Estimate Category-Specific PK Parameters for Multiple Individuals

This example shows how to estimate category-specific (such as young versus old, male
versus female), individual-specific, and population-wide parameters using PK profile
data from multiple individuals.



 sbiofit

1-77

Background

Suppose you have drug plasma concentration data from 30 individuals and want
to estimate pharmacokinetic parameters, namely the volumes of central and
peripheral compartment, the clearance, and intercompartmental clearance. Assume
the drug concentration versus the time profile follows the biexponential decline

, where  is the drug concentration at time t, and  and  are slopes
for corresponding exponential declines.

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals
after a bolus dose (100 mg) measured at different times for both central and peripheral
compartments. It also contains categorical variables, namely Sex and Age.

clear

load(fullfile(matlabroot,'examples','simbio','sd5_302RAgeSex.mat'))

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for
the fitting function sbiofit. A groupedData object also allows you set independent
variable and group variable names (if they exist). Set the units of the ID, Time,
CentralConc, PeripheralConc, Age, and Sex variables. The units are optional and
only required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

gData = groupedData(data);

gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};

gData.Properties

The IndependentVariableName and GroupVariableName properties have been
automatically set to the Time and ID variables of the data.

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {1x6 cell}

             DimensionNames: {'Row'  'Variable'}

                   UserData: []

                   RowNames: {}



1 Functions — Alphabetical List

1-78

              VariableNames: {1x6 cell}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'

Visualize Data

Display the response data for each individual.

sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'});

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion
dosing and first-order elimination where the elimination rate depends on the clearance



 sbiofit

1-79

and volume of the central compartment. Use the configset object to turn on unit
conversion.

pkmd                                    = PKModelDesign;

pkc1                                    = addCompartment(pkmd,'Central');

pkc1.DosingType                         = 'Bolus';

pkc1.EliminationType                    = 'linear-clearance';

pkc1.HasResponseVariable                = true;

pkc2                                    = addCompartment(pkmd,'Peripheral');

model                                   = construct(pkmd);

configset                               = getconfigset(model);

configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models”.

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on
setting up different dosing strategies, see “Doses”.

dose             = sbiodose('dose','TargetName','Drug_Central');

dose.StartTime   = 0;

dose.Amount      = 100;

dose.AmountUnits = 'milligram';

dose.TimeUnits   = 'hour';

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral
compartments. Map these variables to the appropriate model components, which are
Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to
estimate. The estimatedInfo object lets you optionally specify parameter transforms,
initial values, and parameter bounds. Since both Central and Peripheral are
constrained to be positive, specify a log-transform for each parameter.

paramsToEstimate    = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};

estimatedParam      = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);



1 Functions — Alphabetical List

1-80

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the 'Pooled' name-value
pair argument to false.

unpooledFit =  sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Display Results

Plot the fitted results versus the original data for each individual (group).

plot(unpooledFit);

For an unpooled fit, sbiofit always returns one results object for each individual.



 sbiofit

1-81

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that
is, if some parameters are related to one or more categories. If there are any category
dependencies, it might be possible to reduce the number of degrees of freedom by
estimating just category-specific values for those parameters.

First extract the ID and category values for each ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

Add variables to the table containing each parameter's estimate.

allParamValues            = vertcat(unpooledFit.ParameterEstimates);

catParamValues.Central    = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));

catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));

catParamValues.Q12        = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));

catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Plot estimates of each parameter for each category. gscatter requires Statistics
and Machine Learning Toolbox™. If you do not have it, use other alternative plotting
functions such as plot.

h           = figure;

ylabels     = {'Central','Peripheral','Cl\_Central','Q12'};

plotNumber  = 1;

for i = 1:4

    thisParam = estimatedParam(i).Name;

    % Plot for Sex category

    subplot(4,2,plotNumber);

    plotNumber  = plotNumber + 1;

    gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);

    ax          = gca;

    ax.XTick    = [];

    ylabel(ylabels(i));

    % Plot for Age category

    subplot(4,2,plotNumber);

    plotNumber  = plotNumber + 1;

    gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);

    ax          = gca;

    ax.XTick    = [];

    ylabel(ylabels(i));



1 Functions — Alphabetical List

1-82

end

Based on the plot, it seems that young individuals tend to have higher volumes of central
and peripheral compartments (Central, Peripheral) than old invididuals (that is,
the volumes seem to be age-specific). In addition, males tend to have lower clearance
rates (Cl_Central) than females but the opposite for the Q12 parameter (that is, the
clearance and Q12 seem to be sex-specific).

Estimate Category-Specific Parameters

Use the 'CategoryVariableName' property of the estimatedInfo object to specify
which category to use during fitting. Use 'Sex' as the group to fit for the clearrance



 sbiofit

1-83

Cl_Central and Q12 parameters. Use 'Age' as the group to fit for the Central and
Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';

estimatedParam(2).CategoryVariableName = 'Age';

estimatedParam(3).CategoryVariableName = 'Sex';

estimatedParam(4).CategoryVariableName = 'Sex';

categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)

When fitting by category (or group), sbiofit always returns one results object, not one
for each category level. This is because both male and female individuals are considered
to be part of the same optimization using the same error model and error parameters,
similarly for the young and old individuals.

categoryFit = 

  OptimResults with properties:

                   ExitFlag: 3

                     Output: [1x1 struct]

                  GroupName: []

                       Beta: [8x5 table]

         ParameterEstimates: [120x6 table]

                          J: [240x8x2 double]

                       COVB: [8x8 double]

           CovarianceMatrix: [8x8 double]

                          R: [240x2 double]

                        MSE: 0.4365

                        SSE: 206.0170

                    Weights: []

              LogLikelihood: -478.0919

                        AIC: 972.1837

                        BIC: 1.0056e+03

                        DFE: 472

    EstimatedParameterNames: {'Central'  'Peripheral'  'Q12'  'Cl_Central'}

             ErrorModelInfo: [1x3 table]

         EstimationFunction: 'lsqnonlin'

Plot Results

Plot the category-specific estimated results.

plot(categoryFit);



1 Functions — Alphabetical List

1-84

For the Cl_Central and Q12 parameters, all males had the same estimates, and
similarly for the females. For the Central and Peripheral parameters, all young
individuals had the same estimates, and similarly for the old individuals.

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is,
estimate one set of parameters for all individuals by setting the 'Pooled' name-value
pair argument to true. The warning message tells you that this option will ignore any
category-specific information (if they exist).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Warning: You called SBIOFIT using the Pooled option. The CategoryVariableName



 sbiofit

1-85

values of the ESTIMINFO input will be ignored. 

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated
for each individual, the data was fitted using the same set of parameters (that is, all
individuals had the same fitted line).

plot(pooledFit);

Compare Residuals

Compare residuals of CentralConc and PeripheralConc responses for each fit.



1 Functions — Alphabetical List

1-86

t = gData.Time;

allResid(:,:,1) = pooledFit.R;

allResid(:,:,2) = categoryFit.R;

allResid(:,:,3) = vertcat(unpooledFit.R);

figure;

responseList = {'CentralConc', 'PeripheralConc'};

for i = 1:2

    subplot(2,1,i);

    oneResid = squeeze(allResid(:,i,:));

    plot(t,oneResid,'o');

    refline(0,0); % A reference line representing a zero residual

    title(sprintf('Residuals (%s)', responseList{i}));

    xlabel('Time');

    ylabel('Residuals');

    legend({'Pooled','Category-Specific','Unpooled'});

end

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to
each indivdual. This was expected since it used the most number of degrees of freedom.
The category-fit reduced the number of degrees of freedom by fitting the data to two
categories (sex and age). As a result, the residuals were larger than the unpooled fit,
but still smaller than the population-fit, which estimated just one set of parameters for
all individuals. The category-fit might be a good compromise between the unpooled and
pooled fitting provided that any hierarchical model exists within your data.



 sbiofit

1-87

Estimate a Parameter from the Yeast G protein Model

This example uses the yeast heterotrimeric G protein model and experimental data
reported by [1]. For details about the model, see the Background section in “Parameter
Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G
Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G
protein as reported in the reference paper [1].



1 Functions — Alphabetical List

1-88

time = [0 10 30 60 110 210 300 450 600]';

GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);

grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate
which species in the model corresponds to which response variable in the data. In
this example, map the model parameter GaFrac to the experimental data variable
GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be
estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam);

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans = 

    Name     Estimate    StandardError

    _____    ________    _____________

    'kGd'    0.11        0.00037969   

• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast
Heterotrimeric G Protein Cycle”

Input Arguments
sm — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The active configset
object of the model contains solver settings for simulation. Any active doses and



 sbiofit

1-89

variants are applied to the model during simulation unless specified otherwise using the
dosing and variants input arguments, respectively.

grpData — Data to fit
groupedData object

Data to fit, specified as a groupedData object.

The name of the time variable must be defined in the IndependentVariableName
property of grpData. For instance, if the time variable name is 'TIME', then specify it
as follows.

grpData.Properties.IndependentVariableName = 'TIME';

If the data contains more than one group of measurements, the grouping variable name
must be defined in the GroupVariableName property of grpData. For example, if the
grouping variable name is 'GROUP', then specify it as follows.

grpData.Properties.GroupVariableName = 'GROUP';

A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual or experimental condition.

Note: sbiofit uses the categorical function to identify groups. If any group values
are converted to the same value by categorical, then those observations are treated
as belonging to the same group. For instance, if some observations have no group
information (that is, empty string), then categorical converts empty strings to
<undefined>, and these observations are treated as one group.

responseMap — Mapping information of model components to grpData
string | cell array of strings

Mapping information of model components to grpData, specified as a string or cell array
of strings.

Each string is an equation-like expression, similar to assignment rules in SimBiology. It
contains the name (or qualified name) of a quantity (species, compartment, or parameter)
in the model sm, followed by the character '=' and the name of a variable in grpData.
For clarity, white spaces are allowed between names and '='.

For example, if you have the concentration data 'CONC' in grpData for a species
'Drug_Central', you can specify it as follows.



1 Functions — Alphabetical List

1-90

responseMap = 'Drug_Central = CONC';

To unambiguously name a species, use the qualified name, which includes the name of
the compartment. To name a reaction-scoped parameter, use the reaction name to qualify
the parameter. If the name is not a valid MATLAB variable name, surround it by square
brackets such as [reaction 1].[parameter 1].

An error is issued if any (qualified) name matches two components of the same type.
However, you can use a (qualified) name that matches two components of different types,
and the function first finds the species with the given name, followed by compartments
and then parameters.

estiminfo — Estimated parameters
estimatedInfo object | vector of estimatedInfo objects

Estimated parameters, specified as an estimatedInfo object or vector of
estimatedInfo objects that defines the estimated parameters in the model sm, and
other optional information such as their initial estimates, transformations, bound
constraints, and categories. Supported transforms are log, logit, and probit.

If you do not specify Pooled name-value pair argument, sbiofit uses
CategoryVariableName property of estiminfo to decide if parameters should be
estimated for each individual, group, category, or all individuals as a whole. Use the
Pooled option to override any CategoryVariableName values. For details about
CategoryVariableName property, see estimatedInfo object.

Note: sbiofit uses the categorical function to identify groups or categories. If any
group values are converted to the same value by categorical, then those observations
are treated as belonging to the same group. For instance, if some observations have no
group information (that is, empty string as a group value), then categorical converts
empty strings to <undefined>, and these observations are treated as one group.

dosing — Dosing information
[] | 2-D matrix of dose objects

Dosing information, specified as an empty array or 2-D matrix of dose objects
(ScheduleDose object or RepeatDose object). If empty, no doses are applied
during simulation, even if the model has active doses. If not empty, the matrix must have
a single row or one row per group in the data grpData. If it has a single row, same doses



 sbiofit

1-91

are applied to all groups during simulation. If it has multiple rows, each row is applied to
a separate group, in the same order as the groups appear in grpData.

Multiple columns are allowed so that you can apply multiple dose objects to each
group. Each column of doses must reference the same components in the model sm.
Specifically, all doses (except for empty doses) in a column must have the same values
for TargetName, DurationParameterName, and LagParameterName. If some groups
require more doses than others, then fill in the matrix with dummy doses that are either
default doses or empty doses.

A default dose has default values for all properties, except for the Name property. An
empty dose has a dose amount of 0, thus having no effect on the model. Create a default
dose as follows.

d1 = sbiodose('d1');

In addition to manually constructing dose objects, if grpData has dosing information,
you can use the createDoses method to construct doses.

functionName — Estimation function name
string

Estimation function name, specified as a string. Choices are as follows.

• 'nlinfit' (Statistics and Machine Learning Toolbox is required.)
• 'fminunc' (Optimization Toolbox is required.)
• 'fmincon' (Optimization Toolbox is required.)
• 'fminsearch'

• 'lsqcurvefit' (Optimization Toolbox is required.)
• 'lsqnonlin' (Optimization Toolbox is required.)
• 'patternsearch' (Global Optimization Toolbox is required.)
• 'ga' (Global Optimization Toolbox is required.)
• 'particleswarm' (Global Optimization Toolbox is required.)

By default, sbiofit uses the first available estimation function among the following:
lsqnonlin, nlinfit, or fminsearch. For the summary of supported methods and
fitting options, see “Supported Methods for Parameter Estimation”.

options — Options specific to estimation function
struct | optimoptions object

Options specific to the estimation function, specified as a struct or optimoptions object.



1 Functions — Alphabetical List

1-92

• statset struct for nlinfit
• optimset struct for fminsearch
• optimoptions object for lsqcurvefit, lsqnonlin, fminunc, particleswarm, ga,

and patternsearch
• optimoptions object or gaoptimset struct for ga
• optimoptions object or psoptimset struct for patternsearch

See “Default Options for Estimation Algorithms” on page 1-99 for more details and
default options associated with each estimation function.

variants — Variants
[] | vector of variant objects

Variants, specified as an empty array or vector of variant objects. If empty, no variants
are used even if the model has active variants.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ErrorModel','constant','UseParallel',true specifies a constant
error model and to run simulations in parallel during parameter estimation.

'ErrorModel' — Error model
'constant' (default) | cell array | categorical vector | table

Error model(s) used for estimation, specified as a string, cell array of strings, categorical
vector, or a table.

If it is a cell array or categorical vector, its length must match the number of responses in
the responseMap argument.

If it is a table, it must contain a single variable that is a column vector of error model
names. The names can be a cell array of strings or a vector of categorical variables. If
the table has more than one row, then the RowNames property must match the response
variable names specified in the right hand side of responseMap. If the table does not use
the RowNames property, the nth error is associated with the nth response.



 sbiofit

1-93

If you specify only one error model, then sbiofit estimates one set of error parameter(s)
for all responses.

You can specify separate error models only if you are using these methods: lsqnonlin,
lsqcurvefit, fmincon, fminunc, fminsearch, patternsearch, ga, and
particleswarm.

There are four built-in error models. Each model defines the error using a standard
mean-zero and unit-variance (Gaussian) variable e, simulation results f, and one or two
parameters a and b.

• 'constant': y f ae= +

• 'proportional': y f b f e= +

• 'combined': y f a b f e= + +( )

• 'exponential': y f ae= *exp( )

Note: If you specify an error model, you cannot specify weights except for the constant
error model.

'Weights' — Weights
matrix | function handle

Weights used for estimation, specified as a matrix of real positive weights, where
the number of columns corresponds to the number of responses, or a function handle
that accepts a vector of predicted response values and returns a vector of real positive
weights.

If you specify an error model, you cannot use weights except for the constant error model.
If neither the 'ErrorModel' or 'Weights' is specified, by default the function uses the
constant error model with equal weights.

'Pooled' — Fit option flag
false (default) | true

Fit option flag, specifying whether to fit each individual (false) or pool all individual
data (true).



1 Functions — Alphabetical List

1-94

When true, the function performs fitting for all individuals or groups simultaneously
using the same parameter estimates, and fitResults is a scalar results object.

When false, the function fits each group or individual separately using group- or
individual-specific parameters, and fitResults is a vector of results objects with one
result for each group.

Note: Use this option to override any CategoryVariableName values of estiminfo.

'UseParallel' — Flag for parallel simulations
false (default) | true

Flag for parallel simulations during fitting, specified as true or false. If true and
Parallel Computing Toolbox™ is available, the function runs simulations in parallel.

'SensitivityAnalysis' — Flag to use parameter sensitivities to determine gradients of
the objective function
true | false

Flag to use parameter sensitivities to determine gradients of the objective function,
specified as true or false. By default, it is true for fmincon, fminunc, lsqnonlin,
and lsqcurvefit methods. Otherwise, it is false.

SimBiology uses the complex-step approximation method to calculate parameter
sensitivities. Such calculated sensitivities can be used to determine gradients of the
objective function during parameter estimation to improve fitting. The default behavior
of sbiofit is to use such sensitivities to determine gradients whenever the algorithm
is gradient-based and if the SimBiology model supports sensitivity analysis. For details
about the model requirements and sensitivity analysis, see “Sensitivity Calculation”.

'ProgressPlot' — Flag to show the progress of parameter estimation
false (default) | true

Flag to show the progress of parameter estimation, specified as true or false. If
true, a new figure opens containing plots that show the log-likelihood, termination
criteria, and estimated parameters for each iteration. This option is not supported for the
nlinfit method.

If you are using the Optimization Toolbox functions (fminunc, fmincon, lsqcurvefit,
lsqnonlin), the figure also shows the First Order Optimality plot.



 sbiofit

1-95

For an unpooled fit, each line on the plots represents an individual. For a pooled fit, a
single line represents all individuals. The line becomes faded when the fit is complete.

The plots also keep track of the progress when you run sbiofit (for both pooled and
unpooled fits) in parallel using remote clusters.

Output Arguments

fitResults — Estimation results
OptimResults object | NLINResults object | Vector of results objects

Estimation results, returned as a OptimResults object or NLINResults
object or a vector of these objects. Both results objects are subclasses of the
LeastSquaresResults object.

If the function uses nlinfit, then fitResults is a NLINResults object. Otherwise,
fitResults is an OptimResults object.

When 'Pooled' is set to false, the function fits each group separately using group-
specific parameters, and fitResults is a vector of results objects with one results object
for each group.

When 'Pooled' is set to true, the function performs fitting for all individuals or groups
simultaneously using the same parameter estimates, and fitResults is a scalar results
object.

When 'Pooled' is not used, and CategoryVariableName values of estiminfo are
all <none>, fitResults is a single result object. This is the same behavior as setting
'Pooled' to true.

When 'Pooled' is not used, and CategoryVariableName values of estiminfo are
all <GroupVariableName>, fitResults is a vector of results objects. This is the same
behavior as setting 'Pooled' to false.

In all other cases, fitResults is a scalar object containing estimated parameter values
for different groups or categories specified by CategoryVariableName.

simdata — Simulation results
Vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation
results for each group or individual.



1 Functions — Alphabetical List

1-96

If the 'Pooled' option is false, then each simulation uses group-specific parameter
values. If true, then all simulations use the same (population-wide) parameter values.

The states reported in simdata are the states that were included in the responseMap
input argument as well as any other states listed in the StatesToLog property of the
runtime options (RuntimeOptions) of the SimBiology model sm.

More About

Maximum Likelihood Estimation

SimBiology estimates parameters by the method of maximum likelihood. Rather than
directly maximizing the likelihood function, SimBiology constructs an equivalent
minimization problem. Whenever possible, the estimation is formulated as a weighted
least squares (WLS) optimization that minimizes the sum of the squares of weighted
residuals. Otherwise, the estimation is formulated as the minimization of the negative
of the logarithm of the likelihood (NLL). The WLS formulation often converges better
than the NLL formulation, and SimBiology can take advantage of specialized WLS
algorithms, such as the Levenberg-Marquardt algorithm implemented in lsqnonlin and
lsqcurvefit. SimBiology uses WLS when there is a single error model that is constant,
proportional, or exponential. SimBiology uses NLL if you have a combined error model or
a multiple-error model, that is, a model having an error model for each response.

sbiofit supports different optimization methods, and passes in the formulated WLS or
NLL expression to the optimization method that minimizes it.

 Expression that is being minimized

For the constant error model, y fi i
i

N

-( )Â
2

For the proportional error model, 
y f

f f

i i

i gmi

N -( )
Â

2

2

Weighted
Least
Squares
(WLS)

For the exponential error model, ln lny fi i
i

N

-( )Â
2



 sbiofit

1-97

 Expression that is being minimized

For numeric weights, 
y f

w w

i i

i

N

gm i

-( )
Â

2

Negative
Log-
likelihood
(NLL)

For the combined error model and multiple-error model,

i

N
i i

i i

N

i

y f
Â Â

-( )
+

2

2

2

2

2

s
psln

The variables are defined as follows.

N Number of experimental observations
yi The ith experimental observation

fi
Predicted value of the ith observation

s
i

Standard deviation of the ith observation.

• For the constant error model, s i
a=

• For the proportional error model, s i ib f=

• For the combined error model, s i ia b f= +

fgm

f fgm i

i

N N

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃’

1

w
i

The weight of the ith predicted value

wgm

w wgm i

i

N N

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃’

1

When you use numeric weights or the weight function, the weights are assumed to be

inversely proportional to the variance of the error, i.e., s i

i

a

w

2
2

=  where a is the constant



1 Functions — Alphabetical List

1-98

error parameter. If you use weights, you cannot specify an error model except the
constant error model.

Various optimization methods have different requirements on the function that is
being minimized. For some methods, the estimation of model parameters is performed
independently of the estimation of the error model parameters. The following table
summarizes the error models and any separate formulas used for the estimation of error
model parameters, where a and b are error model parameters and e is the standard
mean-zero and unit-variance (Gaussian) variable.

Error
Model

Error Parameter Estimation Function

'constant':
y f aei i= + a

N
y fi i

i

N
2 21

= -( )Â

'exponential':
y f aei i= exp( )a

N
y fi i

i

N
2 21

= -( )Â ln ln

'proportional':
y f b f ei i i= + b

N

y f

f

i i

ii

N
2

2

1=
-Ê

Ë
Á

ˆ

¯
˜Â

'combined':
y f a b f ei i i= + +( )

Error parameters are included in the minimization.

Weights
a

N
y f wi i

i

N

i
2 21

= -( )Â

Note: nlinfit only support single error models, not multiple-error models, that is,
response-specific error models. For a combined error model, it uses an iterative WLS
algorithm. For other error models, it uses the WLS algorithm as described previously.
For details, see nlinfit.



 sbiofit

1-99

Default Options for Estimation Algorithms

Function Default Options

nlinfit sbiofit uses the default options structure associated with
nlinfit, except for:
FunValCheck = 'off'

DerivStep = max(eps^(1/3),

min(1e-4,solverOptions.RelativeTolerance)), where
solverOptions property corresponds to the model’s active
configset object.

fmincon sbiofit uses the default options structure associated with
fmincon, except for:
Display = 'off'

FunctionTolerance = 1e-6*f0, where f0 is the initial value of
objective function.
OptimalityTolerance = 1e-6*f0, where f0 is the initial value
of objective function.
Algorithm = 'trust-region-reflective' when
'SensitivityAnalysis' is true, or 'interior-point' when
'SensitivityAnalysis' is false.
FiniteDifferenceStepSize = max(eps^(1/3),

SolverOptions.RelativeTolerance)

TypicalX = 1e-6 * x0, where x0 is an array of transformed
initial estimates.

fminunc sbiofit uses the default options structure associated with
fminunc, except for:
Display = 'off'

FunctionTolerance = 1e-6*f0, where f0 is the initial value of
objective function.
OptimalityTolerance = 1e-6*f0, where f0 is the initial value
of objective function.
Algorithm = 'trust-region' when 'SensitivityAnalysis'
is true, or 'quasi-newton' when 'SensitivityAnalysis' is
false.
FiniteDifferenceStepSize = max(eps^(1/3),

SolverOptions.RelativeTolerance)

TypicalX = 1e-6 * x0, where x0 is an array of transformed
initial estimates.



1 Functions — Alphabetical List

1-100

Function Default Options

fminsearch sbiofit uses the default options structure associated with
fminsearch, except for:
Display = 'off'

TolFun = 1e-6 * f0, where f0 is the initial value of objective
function.

lsqcurvefit,
lsqnonlin

Requires Optimization Toolbox.

sbiofit uses the default options structure associated with
lsqcurvefit and lsqnonlin, except for:
Display = 'off'

FunctionTolerance = 1e-6 * norm(f0), where f0 is the
initial value of objective function.
OptimalityTolerance = 1e-6*f0, where f0 is the initial value
of objective function.
FiniteDifferenceStepSize = max(eps^(1/3),

min(1e-4,solverOptions.RelativeTolerance)) , where
solverOptions property corresponds to the model’s active
configset object.
TypicalX = 1e-6 * x0, where x0 is an array of transformed
initial estimates.

patternsearch Requires Global Optimization Toolbox.

sbiofit uses the default options object (optimoptions)
associated with patternsearch, except for:
Display = 'off'

FunctionTolerance = 1e-6 * f0, where f0 is the initial value
of the objective function.
MeshTolerance = 1.0e-3

AccelerateMesh = true

ga Requires Global Optimization Toolbox.

sbiofit uses the default options object (optimoptions)
associated with ga, except for:
Display = 'off'

FunctionTolerance = 1e-6 * f0, where f0 is the initial value
of objective function.
MutationFcn = @mutationadaptfeasible



 sbiofit

1-101

Function Default Options

particleswarm Requires Global Optimization Toolbox.
sbiofit uses the following default options for the particleswarm
algorithm, except for:
Display = 'off'

FunctionTolerance = 1e-6 * f0, where f0 is the initial value
of objective function.

• “What is Nonlinear Regression?”
• “Fitting Options in SimBiology”
• “Maximum Likelihood Estimation”
• “Fitting Workflow for sbiofit”
• “Supported Methods for Parameter Estimation”
• “Sensitivity Calculation”

References

[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
estimatedInfo object | fmincon | fminsearch | fminunc | ga | groupedData
object | LeastSquaresResults object | lsqcurvefit | lsqnonlin |
nlinfit | NLINResults object | OptimResults object | particleswarm |
patternsearch | sbiofitmixed



1 Functions — Alphabetical List

1-102

sbiofitmixed

Fit nonlinear mixed-effects model (requires Statistics and Machine Learning Toolbox
software)

Syntax

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo)

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing)

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing,functionName)

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing,functionName,opt)

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing,functionName,opt,variants)

fitResults = sbiofitmixed(_,'UseParallel',tf)

[fitResults,simDataI,simDataP] = sbiofitmixed(_)

Description

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo)

performs nonlinear mixed-effects estimation using the SimBiology model sm and returns
a NLMEResults object fitResults.

grpData is a groupedData object specifying the data to fit. responseMap is a string
or cell array of strings that maps model components to response data in grpData.
covEstiminfo is a CovariateModel object or an array of estimatedInfo objects
that defines the parameters to be estimated.

If the model contains active doses and variants, they are applied during the simulation.

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing) uses the dosing information specified by a matrix of SimBiology dose objects
dosing instead of using the active doses of the model sm if there are any.



 sbiofitmixed

1-103

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing,functionName) uses the estimation function specified by functionName that
must be either 'nlmefit' or 'nlmefitsa'.

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing,functionName,opt) uses the additional options specified by opt for the
estimation function functionName.

fitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,

dosing,functionName,opt,variants) applies variant objects specified as variants
instead of using any active variants of the model.

fitResults = sbiofitmixed(_,'UseParallel',tf) provides an option to estimate
parameters in parallel if Parallel Computing Toolbox is available.

[fitResults,simDataI,simDataP] = sbiofitmixed(_) returns a vector of results
objects fitResults, vector of simulation results simDataI using individual-specific
parameter estimates, and vector of simulation results simDataP using population
parameter estimates.

Note:

• sbiofitmixed unifies sbionlmefit and sbionlmefitsa estimation functions. Use
sbiofitmixed to perform nonlinear mixed-effects modeling and estimation.

• sbiofitmixed simulates the model using a SimFunction object, which
automatically accelerates simulations by default. Hence it is not necessary to run
sbioaccelerate before you call sbiofitmixed.

Examples

Fit a One-Compartment PK Model to the Phenobarbital Data

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or
more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of



1 Functions — Alphabetical List

1-104

newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the data.

load pheno.mat ds

Convert the dataset to a groupedData object, a container for holding tabular data
that is divided into groups. It can automatically identify commonly used variable names
as the grouping variable or independent (time) variable. Display the properties of the
data and confirm that GroupVariableName and IndependentVariableName are
correctly identified as 'ID' and 'TIME', respectively.

data = groupedData(ds);

data.Properties

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {}

             DimensionNames: {'Observations'  'Variables'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'TIME'  'DOSE'  'WEIGHT'  'APGAR'  'CONC'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'TIME'

Create a simple one-compartment PK model with bolus dosing and linear clearance to fit
such data. Use the PKModelDesign object to construct the model. Each compartment is
defined by a name, dosing type, a clearance type, and whether or not the dosing requires
a lag parameter. After constructing the model, you can also get a PKModelMap object map
that lists the names of species and parameters in the model that are most relevant for
fitting.

pkmd = PKModelDesign;

pkmd.addCompartment('Central','DosingType','Bolus','EliminationType','linear-clearance','HasResponseVariable',true,'HasLag',false);

[onecomp, map] = pkmd.construct;

Describe the experimentally measured response by mapping the appropriate model
component to the response variable. In other words, indicate which species in the model
corresponds to which response variable in the data. The PKModelMap property Observed
indicates that the relevant species in the model is Drug_Central, which represents



 sbiofitmixed

1-105

the drug concentration in the system. The relevant data variable is CONC, which you
visualized previously.

map.Observed

ans = 

    'Drug_Central'

Map the Drug_Central species to the CONC variable.

responseMap = 'Drug_Central = CONC';

The parameters to estimate in this model are the volume of the central compartment
Central and the clearance rate Cl_Central. The PKModelMap property Estimated
lists these relevant parameters. The underlying algorithm of sbiofit assumes
parameters are normally distributed, but this assumption may not be true for biological
parameters that are constrained to be positive, such as volume and clearance. Specify a
log transform for the estimated parameters so that the transformed parameters follow a
normal distribution. Use an estimatedInfo object to define such transforms and initial
values (optional).

map.Estimated

ans = 

    'Central'

    'Cl_Central'

Define such estimated parameters, appropriate transformations, and initial values.

estimatedParams = estimatedInfo({'log(Central)','log(Cl_Central)'},'InitialValue',[1 1]);

Each infant received a different schedule of dosing. The amount of drug is listed in the
data variable DOSE. To specify these dosing during fitting, create dose objects from the
data. These objects use the property TargetName to specify which species in the model
receives the dose. In this example, the target species is Drug_Central, as listed by the
PKModelMap property Dosed.

map.Dosed

ans = 



1 Functions — Alphabetical List

1-106

    'Drug_Central'

Create a sample dose with this target name and then use the createDoses method of
groupedData object data to generate doses for each infant based on the dosing data
DOSE.

sampleDose = sbiodose('sample','TargetName','Drug_Central');

doses = createDoses(data,'DOSE','',sampleDose);

Fit the model.

[nlmeResults,simI,simP] = sbiofitmixed(onecomp,data,responseMap,estimatedParams,doses,'nlmefit');

Visualize the fitted results using individual-specific parameter estimates.

plot(nlmeResults,'ParameterType','individual');

Visualize the fitted results using population parameter estimates.

plot(nlmeResults,'ParameterType','population');



 sbiofitmixed

1-107

• “Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”

Input Arguments

sm — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The active configset
object of the model contains solver settings for simulation. Any active doses and
variants are applied to the model during simulation unless specified otherwise using the
dosing and variants input arguments, respectively.

grpData — Data to fit
groupedData object

Data to fit, specified as a groupedData object.



1 Functions — Alphabetical List

1-108

The name of the time variable must be defined in the IndependentVariableName
property of grpData. For instance, if the time variable name is 'TIME', then specify it
as follows.

grpData.Properties.IndependentVariableName = 'TIME';

grpData must have at least two groups, and the name of grouping variable name
must be defined in the GroupVariableName property of grpData. For example, if the
grouping variable name is 'GROUP', then specify it as follows.

grpData.Properties.GroupVariableName = 'GROUP';

A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual or experimental condition.

Note: sbiofitmixed uses the categorical function to identify groups. If any group
values are converted to the same value by categorical, then those observations are
treated as belonging to the same group. For instance, if some observations have no
group information (that is, empty string), then categorical converts empty strings to
<undefined>, and these observations are treated as one group.

responseMap — Mapping information of model components to response data
string | cell array of strings

Mapping information of model components to response data in grpData, specified as a
string or cell array of strings.

Each string is an equation-like expression, similar to assignment rules in SimBiology. It
contains the name (or qualified name) of a quantity (species, compartment, or parameter)
in the model sm, followed by the character '=' and the name of a variable in grpData.
For clarity, white spaces are allowed between names and '='.

For example, if you have the concentration data 'CONC' in grpData that corresponds to
a model species 'Drug_Central', you can specify the mapping information as follows.

responseMap = 'Drug_Central = CONC';

To unambiguously name a species, use the qualified name, which includes the name of
the compartment. To name a reaction-scoped parameter, use the reaction name to qualify
the parameter. If the name is not a valid MATLAB variable name, surround it by square
brackets such as [reaction 1].[parameter 1].



 sbiofitmixed

1-109

An error is issued if any (qualified) name matches two components of the same type.
However, you can use a (qualified) name that matches two components of different types,
and the function first finds the species with the given name, followed by compartments
and then parameters.

covEstiminfo — Estimated parameters
vector of estimatedInfo objects | CovariateModel object

Estimated parameters, specified as a vector of estimatedInfo objects or a
CovariateModel object that defines the estimated parameters in the model sm, their
initial estimates (optional), and their relationship to group-specific covariates included in
grpData (optional). If this is a vector of estimatedInfo objects, then no covariates are
used, and all parameters are estimated with group-specific random effects.

You can also specify parameter transformations if necessary. Supported transforms
are log, logit, and probit. For details, see estimatedInfo object and
CovariateModel object.

If covEstiminfo is a vector of estimatedInfo objects, the CategoryVariableName
property of each of these objects is ignored.

dosing — Dosing information
[] | 2-D matrix of dose objects

Dosing information, specified as an empty array or 2-D matrix of dose objects
(ScheduleDose object or RepeatDose object). If empty, no doses are applied
during simulation, even if the model has active doses. If not empty, the matrix must have
a single row or one row per group in the data grpData. If it has a single row, the same
doses are applied to all groups during simulation. If it has multiple rows, each row is
applied to a separate group, in the same order as the groups appear in grpData.

Multiple columns are allowed so that you can apply multiple dose objects to each
group. Each column of doses must reference the same components in the model sm.
Specifically, all doses (except for empty doses) in a column must have the same values
for TargetName, DurationParameterName, and LagParameterName. If some groups
require more doses than others, then fill in the matrix with dummy doses that are either
default doses or empty doses.

A default dose has default values for all properties, except for the Name property. An
empty dose has a dose amount of 0, thus having no effect on the model. Create a default
dose as follows.



1 Functions — Alphabetical List

1-110

d1 = sbiodose('d1');

In addition to manually constructing dose objects, if grpData has dosing information,
you can use the createDoses method of groupedData object grpData to construct
doses.

functionName — Estimation function name
string

Estimation function name, specified as a string. Choices are 'nlmefit' or
'nlmefitsa'. For the summary supported methods and fitting options, see “Supported
Methods for Parameter Estimation”.

opt — Options specific to estimation function
struct

Options specific to the estimation function, specified as a structure. The structure
contains fields and default values that are the name-value pair arguments accepted by
nlmefit and nlmefitsa, except the following that are not supported.

• 'FEConstDesign'

• 'FEGroupDesign’
• 'FEObsDesign'

• 'FEParamsSelect'

• 'ParamTransform'

• 'REConstDesign'

• 'REGroupDesign'

• 'REObsDesign'

• 'Vectorization'

'REParamsSelect' is only supported when covEstiminfo is a vector of
estimatedInfo objects.

Use the statset function only to set the 'Options' field of the opt structure as
follows.

opt.Options = statset('Display','iter','TolX',1e-3,'TolFun',1e-3);

For other supported name-value pair arguments (see nlmefit and nlmefitsa), set
them as follows.



 sbiofitmixed

1-111

opt.ErrorModel = 'proportional';

opt.ApproximationType = 'LME';

variants — Variants
[] | vector of variant objects

Variants, specified as an empty array or vector of variant objects. If empty, no variants
are used even if the model has active variants.

tf — 'UseParallel' option
true | false

'UseParallel' option, specified as true or false. If true, and Parallel Computing
Toolbox is available, the function performs parameter estimation in parallel.

Output Arguments

fitResults — Estimation results
NLMEResults object

Estimation results, returned as an NLMEResults object.

simDataI — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation
results for each group (or individual) using fixed-effect and random-effect estimates
(individual-specific parameter estimates).

The states reported in simDataI are the states that were included in the responseMap
input argument as well as any other states listed in the StatesToLog property of the
runtime options (RuntimeOptions) of the SimBiology model sm.

simDataP — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation
results for each group (or individual) using only fixed-effect estimates (population
parameter estimates).

The states reported in simDataP are the states that were included in the responseMap
input argument as well as any other states listed in the StatesToLog property of the
runtime options (RuntimeOptions) of the SimBiology model sm.



1 Functions — Alphabetical List

1-112

More About
• “What Is a Nonlinear Mixed-Effects Model?”
• “Nonlinear Mixed-Effects Modeling Workflow”
• “Specify a Covariate Model”
• “Specify an Error Model”
• “Maximum Likelihood Estimation”
• “Obtain the Fitting Status”
• “Supported Methods for Parameter Estimation”

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–
83.

See Also
CovariateModel object | estimatedInfo object | groupedData | nlmefit |
nlmefitsa | NLMEResults object | sbiofit | sbiofitstatusplot



 sbiofitstatusplot

1-113

sbiofitstatusplot
Plot status of sbionlmefit or sbionlmefitsa

Syntax

stop = sbiofitstatusplot(beta, status, state)

Description

stop = sbiofitstatusplot(beta, status, state) initializes or updates a plot
with the fixed effects, beta, the log likelihood status.fval, and the variance of the
random effects, diag(status.Psi).

The function returns an output (stop) to satisfy requirements for the 'OutputFcn'
option of nlmefit or nlmefitsa. For sbiofitstatusplot, the value of stop is always
false.

Use sbiofitstatusplot to obtain status information about NLME fitting when using
the sbionlmefit or sbionlmefitsa function . Specify sbiofitstatusplot as a
function handle by using the optionStruct (options structure) input argument to
sbionlmefit or sbionlmefitsa. Use sbiofitstatusplot or customize your own
function to use in the options structure.

Input Arguments

beta

The current fixed effects.

status

Structure containing several fields.

Field Value

inner Structure describing the current status of the inner iterations within
the ALT and LAP procedures, with the fields:



1 Functions — Alphabetical List

1-114

Field Value

• procedure

• 'PNLS', 'LME', or 'none' when the procedure is 'ALT'
• 'PNLS', 'PLM', or 'none' when the procedure is 'LAP'

• state — 'init', 'iter', 'done', or 'none'
• iteration — Integer starting from 0, or NaN

procedure 'ALT' or 'LAP'
iteration Integer starting from 0
fval Current log-likelihood
Psi Current random-effects covariance matrix
theta Current parameterization of Psi
mse Current error variance

state

Either 'init', 'iter', or 'done'.

Examples

Obtain status information for NLME fitting:

% Create options structure with 'OutputFcn'.

optionStruct.Options.OutputFcn = @sbiofitstatusplot;

% Pass options structure with OutputFcn to sbionlmefit function.

results = sbionlmefit(..., optionStruct);

More About

Alt

Alternating algorithm for the optimization of the LME or RELME approximations

FO

First-order estimate



 sbiofitstatusplot

1-115

FOCE

First-order conditional estimate

LAP

Optimization of the Laplacian approximation for FO or FOCE

LME

Linear mixed-effects estimation

NLME

Nonlinear mixed effects

PLM

Profiled likelihood maximization

PNLS

Penalized nonlinear least squares

RELME

Restricted likelihood for the linear mixed-effects model
• “Obtaining the Status of Fitting”

See Also
nlmefit | sbionlinfit | sbionlmefit | sbionlmefitsa



1 Functions — Alphabetical List

1-116

sbiofittool
Open SimBiology desktop for population fitting

Syntax

sbiofittool

Description

sbiofittool opens the SimBiology desktop in a state designed for:

• Importing and plotting data for fitting
• Selecting from a library of pharmacokinetic models
• Performing population fit tasks using sbionlmefit or sbionlmefitsa
• Performing individual fit tasks using sbionlinfit

sbiofittool opens a simplified configuration of the SimBiology desktop. However, all
desktop functionality is available.

If you opened the SimBiology desktop using the simbiology function, then
sbiofittool changes the desktop layout to optimize it for population fitting.

See Also
simbiology



 sbiogetmodel

1-117

sbiogetmodel
Get model object that generated simulation data

Syntax

modelObj = sbiogetmodel(simDataObj)

Arguments

simDataObj SimData object returned by the function sbiosimulate or
by sbioensemblerun.

modelObj Model object associated with the SimData object.

Description

modelObj = sbiogetmodel(simDataObj) returns the SimBiology model (modelObj)
associated with the results from a simulation run (simDataObj). You can use this
function to find the model object associated with the specified SimData object when you
load a project with several model objects and SimData objects.

If the SimBiology model used to generate the SimData object (simDataObj) is not
currently loaded, modelObj is empty.

Examples

Retrieve the model object that generated the SimData object.

1 Create a model object, simulate, and then return the results as a SimData object.

modelObj = sbmlimport('oscillator');

simDataObj = sbiosimulate(modelObj);

2 Get the model that generated the simulation results.

modelObj2 = sbiogetmodel(simDataObj)



1 Functions — Alphabetical List

1-118

SimBiology Model - Oscillator

Model Components:

  Models:            0

  Parameters:        0

  Reactions:         42

  Rules:             0

  Species:           23

3 Check that the two models are the same.

modelObj == modelObj2

ans =

       1

See Also
sbiosimulate



 sbiolasterror

1-119

sbiolasterror

SimBiology last error message

Syntax

sbiolasterror

diagstruct = sbiolasterror

sbiolasterror([])

sbiolasterror(diagstruct)

Arguments

diagstruct The diagnostic structure holding Type, Message ID, and
Message for the errors.

Description

sbiolasterror or diagstruct = sbiolasterror return a SimBiology diagnostic
structure array containing the last error(s) generated by the software. The fields of the
diagnostic structure are:

Type 'error'

MessageID The message ID for the error (for example,
'SimBiology:ConfigSetNameClash')

Message The error message

sbiolasterror([]) resets the SimBiology last error so that it will return an empty
array until the next SimBiology error is encountered.

sbiolasterror(diagstruct) will set the SimBiology last error(s) to those specified in
the diagnostic structure (diagstruct).



1 Functions — Alphabetical List

1-120

Examples

This example shows how to use verify and sbiolasterror.

1 Import a model.

  a = sbmlimport('radiodecay.xml')

  SimBiology Model - RadioactiveDecay 

   Model Components:

     Models:            0

     Parameters:        1

     Reactions:         1

     Rules:             0

     Species:           2

2 Change the ReactionRate of a reaction to make the model invalid.

  a.reactions(1).reactionrate = 'x*y'

  SimBiology Model - RadioactiveDecay 

   Model Components:

     Models:            0

     Parameters:        1

     Reactions:         1

     Rules:             0

     Species:           2

3 Use the function verify to validate the model.

  a.verify

??? Error using==>simbio\private\odebuilder>buildPatternSubStrings

The object y does not resolve on reaction with expression'x*y'.

  

Error in ==> sbiogate at 22

feval(varargin{:});

  

??? --> Error reported from Expression Validation : 

The object 'y' in reaction 'Reaction1' does not resolve

to any in-scope species or parameters.

--> Error reported from Dimensional Analysis : 

Could not resolve species, parameter or model object 'y' 

during dimensional analysis.

--> Error reported from ODE Compilation:

Error using==>simbio\private\odebuilder>buildPatternSubStrings

The object y does not resolve on reaction with expression 'x*y'.

4 Retrieve the error diagnostic struct.



 sbiolasterror

1-121

  p = sbiolasterror

  p = 

  1x3 struct array with fields:

    Type

    MessageID

    Message

5 Display the first error ID and Message.

p(1)

ans = 

     Type: 'Error'

MessageID: 'SimBiology:ReactionObjectDoesNotResolve'

  Message: 'The object 'y' in reaction 'Reaction1' 

       does not resolve to any in-scope 

       species or parameters.'

6 Reset the sbiolasterror.

sbiolasterror([])

ans =

     []

7 Set sbiolasterror to the diagnostic struct.

sbiolasterror(p)

ans = 

1x3 struct array with fields:

    Type

    MessageID

    Message

More About
• sbioroot



1 Functions — Alphabetical List

1-122

See Also
sbiolastwarning | verify



 sbiolastwarning

1-123

sbiolastwarning
SimBiology last warning message

Syntax
sbiolastwarning

diagstruct = sbiolastwarning

sbiolastwarning([])

sbiolastwarning(diagstruct)

Arguments

diagstruct The diagnostic structure holding Type, Message ID, and
Message for the warnings.

Description
sbiolastwarning or diagstruct = sbiolastwarning return a SimBiology
diagnostic structure array containing the last warnings generated by the software. The
fields of the diagnostic structure are:

Type 'warning'

MessageID The message ID for the warning (for example,
'SimBiology:DANotPerformedReactionRate')

Message The warning message

sbiolastwarning([]) resets the SimBiology last warning so that it will return an
empty array until the next SimBiology warning is encountered.

sbiolastwarning(diagstruct) will set the SimBiology last warnings to those
specified in the diagnostic structure (diagstruct).

More About
• sbioroot



1 Functions — Alphabetical List

1-124

See Also
verify | sbiolasterror



 sbioloadproject

1-125

sbioloadproject
Load project from file

Syntax

sbioloadproject('projFilename')

sbioloadproject ('projFilename','variableName')

sbioloadproject projFilename variableName1 variableName2...

s = sbioloadproject (...)

Description

sbioloadproject('projFilename') loads a SimBiology project from a project file
(projFilename). If no extension is specified, sbioloadproject assumes a default
extension of .sbproj. Alternatively, the command syntax is sbioloadproject
projFilename.

sbioloadproject ('projFilename','variableName') loads only the variable
variableName  from the project file.

sbioloadproject projFilename variableName1 variableName2... loads the
specified variables from the project.

s = sbioloadproject (...) returns the contents of projFilename in a variable s.
s is a struct containing fields matching the variables retrieved from the SimBiology
project.

You can display the contents of the project file using the sbiowhos command.

More About
• sbiosaveproject

• sbiowhos

• sbioaddtolibrary

• sbioremovefromlibrary



1 Functions — Alphabetical List

1-126

See Also
sbioaddtolibrary | sbioremovefromlibrary | sbiosaveproject | sbiowhos



 sbiomodel

1-127

sbiomodel
Construct model object

Syntax

modelObj = sbiomodel('NameValue')

modelObj = sbiomodel(...'PropertyName', PropertyValue...)

Arguments

NameValue Required property to specify a unique name for a model
object. Enter a character string.

PropertyName Property name for a Model object from “Property Summary”
on page 1-128.

PropertyValue Property value. Valid value for the specified property.

Description

modelObj = sbiomodel('NameValue') creates a model object and returns the model
object (modelObj). In the model object, this method assigns a value (NameValue) to the
property Name.

modelObj = sbiomodel(...'PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in any format
supported by the function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

Simulate modelObj with the function sbiosimulate.

Add objects to a model object using the methods addkineticlaw, addparameter,
addreaction, addrule, and addspecies.

All SimBiology model objects can be retrieved from the SimBiology root object. A
SimBiology model object has its Parent property set to the SimBiology root object.



1 Functions — Alphabetical List

1-128

Method Summary

Property Summary

Examples

1 Create a SimBiology model object.

modelObj = sbiomodel('cell', 'Tag', 'mymodel');

2 List all modelObj properties and the current values.

get(modelObj)

MATLAB returns:

    Annotation: ''

        Models: [0x1 double]

          Name: 'cell'

         Notes: ''

    Parameters: [0x1 double]

        Parent: [1x1 SimBiology.Root]

       Species: [0x1 double]

     Reactions: [0x1 double]

         Rules: [0x1 double]

           Tag: 'mymodel'

          Type: 'sbiomodel'

      UserData: []

3 Display a summary of modelObj contents.

modelObj

  SimBiology Model - cell 

   Model Components:

     Models:            0

     Parameters:        0

     Reactions:         0

     Rules:             0

     Species:           0



 sbiomodel

1-129

See Also
addcompartment | addconfigset | addevent | addkineticlaw | addparameter
| addreaction | addrule | addspecies | copyobj | get | sbioroot |
sbiosimulate | set



1 Functions — Alphabetical List

1-130

sbionlinfit

Perform nonlinear least-squares regression using SimBiology models

Compatibility

sbionlinfit will be removed in a future release. Use sbiofit instead.

Syntax

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj,

InitEstimates)

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj,

InitEstimates, Name,Value)

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj,

InitEstimates, optionStruct)

[results, SimDataI] = sbionlinfit(...)

Description

Note: This function requires nlinfit in Statistics and Machine Learning Toolbox
(Version 7.0 or later).

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj,

InitEstimates) performs least-squares regression using the SimBiology model,
modelObj, and returns estimated results in the results structure.

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj,

InitEstimates, Name,Value) performs least-squares regression, with additional
options specified by one or more Name,Value pair arguments.

Following is an alternative to the previous syntax:



 sbionlinfit

1-131

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj,

InitEstimates, optionStruct) specifies optionStruct, a structure containing
fields and values used by the options input structure to the nlinfit function.

[results, SimDataI] = sbionlinfit(...) returns simulations of the SimBiology
model, modelObj, using the estimated values of the parameters.

Input Arguments

modelObj

SimBiology model object used to fit observed data.

Note: If using a model object containing active doses (that is, containing dose objects
created using the adddose method, and specified as active using the Active property
of the dose object), be aware that these active doses are ignored by the sbionlinfit
function.

pkModelMapObject

PKModelMap object that defines the roles of the model components in the estimation. For
details, see PKModelMap object.

Note: If using a PKModelMap object that specifies multiple doses, ensure each element in
the Dosed property is unique.

pkDataObj

PKData object that defines the data to use in fitting, and the roles of the data columns
used for estimation. For details, see PKData object.

Note: For each subset of data belonging to a single group (as defined in the data column
specified by the GroupLabel property), the software allows multiple observations made
at the same time. If this is true for your data, be aware that:

• These data points are not averaged, but fitted individually.



1 Functions — Alphabetical List

1-132

• Different numbers of observations at different times cause some time points to be
weighted more.

InitEstimates

Vector of initial parameter estimates for each parameter estimated in
pkModelMapObject.Estimated. The length of InitEstimates must equal at least
the length of pkmodelMapObject.Estimated. The elements of InitEstimates are
transformed as specified by the ParamTransform name-value pair argument.

For details on specifying initial estimates, see “Set Initial Estimates”.

optionStruct

Structure containing fields and values used by the options input structure to the
nlinfit function. The structure can also use the name-value pairs listed below as fields
and values. Defaults for optionStruct are the same as for the options input structure
to nlinfit, except for:

• DerivStep — Default is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated
with modelObj, with a minimum of eps^(1/3).

• FunValCheck — Default is off.

If you have Parallel Computing Toolbox, you can enable parallel computing for faster
data fitting by setting the name-value pair argument 'UseParallel' to true in the
statset options structure as follows:

parpool; % Open a parpool for parallel computing

opt = statset(...,'UseParallel',true); % Enable parallel computing

results = sbionlinfit(...,opt); % Perform data fitting

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The Name,Value arguments are the same as the fields and values in the options
structure accepted by nlinfit. For a complete list, see the options input argument



 sbionlinfit

1-133

in the nlinfit reference page in the Statistics and Machine Learning Toolbox
documentation. The defaults for Name,Value arguments are the same as for the
options structure accepted by nlinfit, except for:

• DerivStep — Default is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated
with modelObj, with a minimum of eps^(1/3).

• FunValCheck — Default is off.

Following are additional Name,Value arguments that you can use with sbionlinfit.

'ParamTransform'

Vector of integers specifying a transformation function for each estimated parameter.
The transformation function, f, takes estimate as an input and returns beta:

beta = f(estimate)

Each element in the vector must be one of these integers specifying the transformation
for the corresponding value of estimate:

• 0 – beta = estimate
• 1 – beta = log(estimate) (default)
• 2 – beta = probit(estimate)
• 3 – beta = logit(estimate)

For details, see “Specify Parameter Transformations”.

'ErrorModel'

String specifying the form of the error term. Default is 'constant'. Each model defines
the error using a standard normal (Gaussian) variable e, the function value f, and one or
two parameters a and b. Choices are:

• 'constant': y = f + a*e
• 'proportional': y = f  + b*abs(f)*e
• 'combined': y = f + (a+b*abs(f))*e
• 'exponential': y = f*exp(a*e), or equivalently log(y) = log(f) + a*e

If you specify an error model, the results output argument includes an errorparam
property, which has the value:



1 Functions — Alphabetical List

1-134

• a for 'constant' and 'exponential'
• b for 'proportional'
• [a b] for 'combined'

Note: If you specify an error model, you cannot specify weights.

'Weights'

Either of the following:

• A matrix of real positive weights, where the number of columns corresponds to the
number of responses. That is, the number of columns must equal the number of
entries in the DependentVarLabel property of pkDataObj. The number of rows in
the matrix must equal the number of rows in the data set.

• A function handle that accepts a vector of predicted response values and returns a
vector of real positive weights.

Note: If using a function handle, the weights must be a function of the response
(dependent variable).

Default is no weights. If you specify weights, you cannot specify an error model.

'Pooled'

Logical specifying whether sbionlinfit does fitting for each individual (false) or if it
pools all individual data and does one fit (true). If set to true, sbionlinfit uses the
same model parameters for each dose level.

Default: false

Output Arguments

results

1-by-N array of objects, where N is the number of groups in pkDataObj. There is one
object per group, and each object contains these properties:



 sbionlinfit

1-135

• ParameterEstimates — A dataset array containing fitted coefficients and their
standard errors.

• CovarianceMatrix — Estimated covariance matrix for the fitted coefficients.
• beta — Vector of scalars specifying the fitted coefficients in transformed space.
• R — Vector of scalars specifying the residual values, where R(i,j) is the residual for

the ith time point and the jth response in the group of data. If your model incudes:

• A single response, then R is a column vector of residual values associated with
time points in the group of data.

• Multiple responses, then R is a matrix of residual values associated with time
points in the group of data, for each response.

• J — Matrix specifying the Jacobian of the model, with respect to an estimated
parameter, that is

J i j k
y

k

j
it

( , , ) =
∂

∂b

where ti is the ith time point, βj is the jth estimated parameter in the transformed
space, and yk is the kth response in the group of data.

If your model incudes:

• A single response, then J is a matrix of Jacobian values associated with time
points in the group of data.

• Multiple responses, then J is a 3-D array of Jacobian values associated with time
points in the group of data, for each response.

• COVB — Estimated covariance matrix for the transformed coefficients.
• mse — Scalar specifying the estimate of the error of the variance term.
• errorparam — Estimated parameters of the error model. This property is a scalar if

you specify 'constant', 'exponential', or 'proportional' for the error model.
This property is a two-element vector if you specify 'combined' for the error model.
This property is an empty array if you specify weights using the 'Weights' name-
value pair argument.



1 Functions — Alphabetical List

1-136

SimDataI

SimData object containing data from simulating the model using estimated parameter
values for individuals. This object includes observed states and logged states.

More About
• “Perform Data Fitting with PKPD Models”

See Also
PKData object | PKModelDesign object | PKModelMap object | Model object
| PKModelDesign object | sbionlmefit | nlinfit | sbionlmefitsa



 sbionlmefit

1-137

sbionlmefit
Estimate nonlinear mixed effects using SimBiology models (requires Statistics and
Machine Learning Toolbox software)

Compatibility
sbionlmefit will be removed in a future release. Use sbiofitmixed instead.

Syntax
results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject,

InitEstimates)

results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject,

CovModelObj)

results = sbionlmefit(..., Name,Value)

results = sbionlmefit(..., optionStruct)

[results, SimDataI, SimDataP] = sbionlmefit(...)

Description
results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject,

InitEstimates) performs nonlinear mixed-effects estimation using the SimBiology
model, modelObj, and returns estimated results in the results structure.

results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject,

CovModelObj) specifies the relationship between parameters and covariates using
CovModelObj, a CovariateModel object. The CovariateModel object also provides
the parameter transformation.

results = sbionlmefit(..., Name,Value) performs nonlinear mixed-effects
estimation, with additional options specified by one or more Name,Value pair
arguments.

Following is an alternative to the previous syntax:

results = sbionlmefit(..., optionStruct) specifies optionStruct, a
structure containing fields and values, that are the name-value pair arguments accepted



1 Functions — Alphabetical List

1-138

by nlmefit. The defaults for optionStruct are the same as the defaults for the
arguments used by nlmefit, with the exceptions explained in “Input Arguments” on
page 1-138.

[results, SimDataI, SimDataP] = sbionlmefit(...) returns simulation data of
the SimBiology model, modelObj, using the estimated values of the parameters.

Input Arguments

modelObject

SimBiology model object used to fit observed data.

Note: If using a model object containing active doses (that is, containing dose objects
created using the adddose method, and specified as active using the Active property
of the dose object), be aware that these active doses are ignored by the sbionlmefit
function.

pkModelMapObject

PKModelMap object that defines the roles of the model components used for estimation.
For details, see PKModelMap object object.

Note: If using a PKModelMap object that specifies multiple doses, ensure each element in
the Dosed property is unique.

pkDataObject

PKData object that defines the data to use in fitting, and the roles of the columns used
for estimation. pkDataObject must define target data for at least two groups. For
details, see PKData object.

Note: For each subset of data belonging to a single group (as defined in the data column
specified by the GroupLabel property), the software allows multiple observations made
at the same time. If this is true for your data, be aware that:



 sbionlmefit

1-139

• These data points are not averaged, but fitted individually.
• Different numbers of observations at different times cause some time points to be

weighted more.

InitEstimates

Vector of initial estimates for the fixed effects. The first P elements of InitEstimates
correspond to the fixed effects for each P element of pkModelMapObject.Estimated.
Additional elements correspond to the fixed effects for covariate factors. The first P
elements of InitEstimates are transformed as specified by the ParamTransform
name-value pairs (log transformed by default). For details on specifying initial estimates,
see “Set Initial Estimates”.

CovModelObj

CovariateModel object that defines the relationship between parameters and
covariates. For details, see CovariateModel object.

Tip To simultaneously fit data from multiple dose levels, omit the random effect (eta)
from the expressions in the CovariateModel object.

optionStruct

Structure containing fields and values that are the name-value pairs accepted by
the nlmefit function. The defaults for optionStruct are the same as the defaults
for the arguments used by nlmefit, with the exceptions noted in “Name-Value Pair
Arguments” on page 1-140.

If you have Parallel Computing Toolbox, you can enable parallel computing for faster
data fitting by setting the name-value pair argument 'UseParallel' to true in the
statset options structure as follows:

parpool; % Open a parpool for parallel computing

opt = statset(...,'UseParallel',true); % Enable parallel computing

results = sbionlmefit(...,'Options',opt); % Perform data fitting



1 Functions — Alphabetical List

1-140

Tip SimBiology software includes the sbiofitstatusplot function, which you can
specify in the OutputFcn field of the Options field. This function lets you monitor the
status of fitting.

Tip To simultaneously fit data from multiple dose levels, use the InitEstimates input
argument and set the value of the REParamsSelect field to a 1-by-n logical vector, with
all entries set to false, where n equals the number of fixed effects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The sbionlmefit function uses the name-value pair arguments supported by the
nlmefit function.

These nlmefit name-value pairs are hard-coded in sbionlmefit, and therefore, you
cannot set them:

• FEParamsSelect

• FEConstDesign

• FEGroupDesign

• FEObsDesign

• REConstDesign

• REGroupDesign

• REObsDesign

• Vectorization

If you provide a CovariateModel object as input to sbionlmefit, then these nlmefit
name-value pairs are computed from the covariate model, and therefore, you cannot set
them:

• FEGroupDesign

• ParamTransform



 sbionlmefit

1-141

• REParamsSelect

You can set all other nlmefit name-value pairs. For details, see the nlmefit reference
page.

Be aware that the defaults for these nlmefit name-value pairs differ when used by
sbionlmefit:

'FEGroupDesign'

Numeric array specifying the design matrix for each group. For details, see “Specify a
Nonlinear, Mixed-Effects Model”.

Default: repmat(eye(P),[1 1 nGroups]), where P = the number of estimated
parameters, and nGroups = the number of groups in the observed data.

'ParamTransform'

Vector of integers specifying how the parameters are distributed. For details, see “Specify
Parameter Transformations”.

Note: Do not use the ParamTransform option to specify parameter transformations
when providing a CovariateModel object to a fitting function. The CovariateModel
object provides the parameter transformation.

Default: Vector of ones, which specifies all parameters are log transformed.

'OptimFun'

String specifying the optimization function used in maximizing the likelihood.

Default: fminunc, if you have Optimization Toolbox installed. Otherwise, the default is
fminsearch.

'Options'

Structure containing multiple fields, including DerivStep, a scalar or vector
specifying the relative difference used in the finite difference gradient calculation, and
FunValCheck, a logical specifying whether to check for invalid values, such as NaN or
Inf, from modelfun.



1 Functions — Alphabetical List

1-142

Default: The default for DerivStep is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated with
modelObj, with a minimum of eps^(1/3). The default for FunValCheck is off.

Tip SimBiology software includes the sbiofitstatusplot function, which you can
specify in the OutputFcn field of the Options name-value pair input argument. This
function lets you monitor the status of fitting.

Tip To simultaneously fit data from multiple dose levels, use the InitEstimates input
argument and set the REParamsSelect name-value pair input argument to a 1-by-n
logical vector, with all entries set to false, where n equals the number of fixed effects.

Output Arguments

results

Structure containing these fields:

• FixedEffects — A dataset array containing estimated fixed effects, including
standard errors.

• RandomEffects — A dataset array containing sampled random effects for each
group in the observed data in pkDataObject.

• IndividualParametereEstimates — A dataset array containing estimated
parameter values for individuals, including random effects.

• PopulationParameterEstimates — A dataset array containing estimated
parameter values for the population, without random effects.

• RandomEffectCovarianceMatrix — A dataset array containing the estimated
covariance matrix of the random effects.

• EstimatedParameterNames — Cell array of strings specifying names of the
estimated parameters.

• CovariateNames — Cell array of strings specifying names of the covariates in
CovModelObj.

• FixedEffectsStruct — Structure containing the values of the estimated fixed
effects.



 sbionlmefit

1-143

• stats — Structure containing information such as AIC, BIC, and weighted residuals.
For details on the fields in this structure, see the stats structure in nlmefit in
the Statistics and Machine Learning Toolbox documentation. However, the fields in
the stats structure returned by sbionlmefit vary slightly from those returned by
nlmefit, namely:

• ires, pres, iwres, pwres, and cwres each contain a matrix of raw or weighted
residuals, with the number of columns equal to the number of responses in the
model.

• The stats structure returned by sbionlmefit includes an additional field,
Observed. This field contains a string or cell array of strings specifying the
measured responses that correspond to the columns in the matrices of the ires,
pres, iwres, pwres, and cwres fields. The Observed field is the same as the
Observed property of the PKModelMap input argument.

SimDataI

SimData object containing data from simulating the model using the estimated
parameter values for individuals. This object includes observed states and logged states.

SimDataP

SimData object containing data from simulating the model using the estimated
parameter values for the population. This object includes observed states and logged
states.

More About
• “Perform Data Fitting with PKPD Models”
• “Specify a Nonlinear, Mixed-Effects Model”
• “Specify Parameter Transformations”

See Also
Model object | PKModelDesign object | PKModelMap object | nlmefit |
PKData object | SimData object | sbiofitstatusplot | sbionlinfit |
sbionlmefitsa



1 Functions — Alphabetical List

1-144

sbionlmefitsa
Estimate nonlinear mixed effects with stochastic EM algorithm (requires Statistics and
Machine Learning Toolbox software)

Compatibility

sbionlmefitsa will be removed in a future release. Use sbiofitmixed instead.

Syntax

results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,

InitEstimates)

results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,

CovModelObj)

results = sbionlmefitsa(..., Name,Value)

results = sbionlmefitsa(..., optionStruct)

[results, SimDataI, SimDataP] = sbionlmefitsa(...)

Description

results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,

InitEstimates) performs estimations using the Stochastic Approximation
Expectation-Maximization (SAEM) algorithm for fitting population data with the
SimBiology model, modelObj, and returns the estimated results in the results
structure.

results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,

CovModelObj) specifies the relationship between parameters and covariates using
CovModelObj, a CovariateModel object. The CovariateModel object also provides
the parameter transformation.

results = sbionlmefitsa(..., Name,Value) performs estimations using the
SAEM algorithm, with additional options specified by one or more Name,Value pair
arguments.



 sbionlmefitsa

1-145

Following is an alternative to the previous syntax:

results = sbionlmefitsa(..., optionStruct) specifies optionStruct, a
structure containing fields and values, that are the name-value pair arguments accepted
by nlmefitsa. The defaults for optionStruct are the same as the defaults for the
name-value pair arguments used by nlmefitsa, with the exceptions explained in “Input
Arguments” on page 1-145.

[results, SimDataI, SimDataP] = sbionlmefitsa(...) returns simulation
data of the SimBiology model, modelObj, using the estimated values of the parameters.

Input Arguments

modelObject

SimBiology model object used to fit observed data.

Note: If using a model object containing active doses (that is, containing dose objects
created using the adddose method, and specified as active using the Active property
of the dose object), be aware that these active doses are ignored by the sbionlmefitsa
function.

pkModelMapObject

PKModelMap object that defines the roles of the model components used for estimation.
For details, see PKModelMap object.

Note: If using a PKModelMap object that specifies multiple doses, ensure each element in
the Dosed property is unique.

pkDataObject

PKData object that defines the data to use in fitting and the roles of the columns used for
estimation. pkDataObject must define target data for at least two groups. For details,
see PKData object.



1 Functions — Alphabetical List

1-146

Note: For each subset of data belonging to a single group (as defined in the data column
specified by the GroupLabel property), the software allows multiple observations made
at the same time. If this is true for your data, be aware that:

• These data points are not averaged, but fitted individually.
• Different numbers of observations at different times cause some time points to be

weighted more.

InitEstimates

Vector of initial estimates for the fixed effects. The first P elements of InitEstimates
correspond to the fixed effects for each P element of pkModelMapObject.Estimated.
Additional elements correspond to the fixed effects for covariate factors. The first P
elements of InitEstimates are transformed as specified by the ParamTransform
name-value pair argument (log transformed by default). For details on specifying initial
estimates, see “Set Initial Estimates”.

CovModelObj

CovariateModel object that defines the relationship between parameters and
covariates. For details, see CovariateModel object.

optionStruct

Structure containing fields and values that are name-value pair arguments accepted by
the nlmefitsa function. The defaults for optionStruct are the same as the defaults
for the arguments used by nlmefitsa, with the exceptions noted in “Name-Value Pair
Arguments” on page 1-147.

If you have Parallel Computing Toolbox, you can enable parallel computing for faster
data fitting by setting the name-value pair argument 'UseParallel' to true in the
statset options structure as follows:

parpool; % Open a parpool for parallel computing

opt = statset(...,'UseParallel',true); % Enable parallel computing

results = sbionlmefitsa(...,'Options',opt); % Perform data fitting

Tip SimBiology software includes the sbiofitstatusplot function, which you can
specify in the OutputFcn field of the Options field. This function lets you monitor the
status of fitting.



 sbionlmefitsa

1-147

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The sbionlmefitsa function uses the name-value pair arguments supported by the
nlmefitsa function.

These nlmefitsa name-value pair arguments are hard-coded in sbionlmefitsa, and
therefore, you cannot set them:

• FEParamsSelect

• FEConstDesign

• FEGroupDesign

• FEObsDesign

• REConstDesign

• REGroupDesign

• REObsDesign

• Vectorization

If you provide a CovariateModel object as input to sbionlmefitsa, then these
nlmefitsa name-value pairs are computed from the covariate model, and therefore, you
cannot set them:

• FEGroupDesign

• ParamTransform

• REParamsSelect

You can set all other nlmefitsa name-value pair arguments. For details on these
arguments, see the nlmefitsa reference page.

Be aware that the defaults for these nlmefitsa name-value pair arguments differ when
used by sbionlmefitsa:

'FEGroupDesign'

Numeric array specifying the design matrix for each group. For details, see “Specify a
Nonlinear, Mixed-Effects Model”.



1 Functions — Alphabetical List

1-148

Default: repmat(eye(P),[1 1 nGroups]), where P = the number of estimated
parameters, and nGroups = the number of groups in the observed data.

'ParamTransform'

Vector of integers specifying how the parameters are distributed. For details, see “Specify
Parameter Transformations”.

Note: Do not use the ParamTransform option to specify parameter transformations
when providing a CovariateModel object to a fitting function. The CovariateModel
object provides the parameter transformation.

Default: Vector of ones, which specifies all parameters are log transformed.

'OptimFun'

String specifying the optimization function used in maximizing the likelihood.

Default: fminunc, if you have Optimization Toolbox installed. Otherwise, the default is
fminsearch.

'Options'

Structure containing multiple fields, including DerivStep, a scalar or vector
specifying the relative difference used in the finite difference gradient calculation, and
FunValCheck, a logical specifying whether to check for invalid values, such as NaN or
Inf, from modelfun.

Default: The default for DerivStep is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated with
modelObj, with a minimum of eps^(1/3). The default for FunValCheck is off.

Tip SimBiology software includes the sbiofitstatusplot function, which you can
specify in the OutputFcn field of the Options name-value pair input argument. This
function lets you monitor the status of fitting.



 sbionlmefitsa

1-149

Output Arguments

results

Structure containing these fields:

• FixedEffects — A dataset array containing estimated fixed effects, including
standard errors.

• RandomEffects — A dataset array containing sampled random effects for each
group in the observed data in pkDataObject.

• IndividualParametereEstimates — A dataset array containing estimated
parameter values for individuals, including random effects.

• PopulationParameterEstimates — A dataset array containing estimated
parameter values for the population, without random effects.

• RandomEffectCovarianceMatrix — A dataset array containing the estimated
covariance matrix of the random effects.

• EstimatedParameterNames — Cell array of strings specifying names of the
estimated parameters.

• CovariateNames — Cell array of strings specifying names of the covariates in
CovModelObj.

• FixedEffectsStruct — Structure containing the values of the estimated fixed
effects.

• stats — Structure containing information such as AIC, BIC, and weighted residuals.
For details on the fields in this structure, see the stats structure in nlmefitsa in
the Statistics and Machine Learning Toolbox documentation. However, the fields in
the stats structure returned by sbionlmefitsa vary slightly from those returned
by nlmefitsa, namely:

• ires, pres, iwres, pwres, and cwres each contain a matrix of raw or weighted
residuals, with the number of columns equal to the number of responses in the
model.

• The stats structure returned by sbionlmefit includes an additional field,
Observed. This field contains a string or cell array of strings specifying the
measured responses that correspond to the columns in the matrices of the ires,
pres, iwres, pwres, and cwres fields. The Observed field is the same as the
Observed property of the PKModelMap input argument.



1 Functions — Alphabetical List

1-150

SimDataI

SimData object containing data from simulating the model using the estimated
parameter values for individuals. This object includes observed states and logged states.

SimDataP

SimData object containing data from simulating the model using the estimated
parameter values for the population. This object includes observed states and logged
states.

More About
• “Perform Data Fitting with PKPD Models”
• “Specify an Error Model”
• “Specify a Nonlinear, Mixed-Effects Model”
• “Specify Parameter Transformations”

See Also
Model object | PKModelDesign object | PKModelMap object | nlmefitsa
| PKData object | SimData object | sbiofitstatusplot | sbionlinfit |
sbionlmefit



 sbionmfiledef

1-151

sbionmfiledef
NONMEM file definition object for sbionmimport

Syntax
nmdefObj = sbionmfiledef

nmdefObj = sbionmfiledef('PropertyName', PropertyValue)

Description

nmdefObj = sbionmfiledef creates an NONMEM® file definition object. The
NONMEM file definition object contains properties for specifying the NONMEM data
items such as group, time, and dependent variable. The NONMEM file definition object
lets you configure the properties to the column heading or the index of the column. Use
the NONMEM file definition object in conjunction with the sbionmimport function to
import NONMEM formatted files for use in fitting.

nmdefObj = sbionmfiledef('PropertyName', PropertyValue) accepts one or
more comma-separated property name/value pairs. Specify PropertyName inside single
quotes. To see the default interpretations for NONMEM formatted files see “Support for
Importing NONMEM Formatted Files”.

Input Arguments
Filename

If Filename extension is .xls or .xlsx it is assumed to be an Excel® file, otherwise
it is assumed to be a text file. sbionmfiledef file reads the file using the dataset
constructor.

Property Name/Value Pairs

'CompartmentLabel'

Identifies the column in the NONMEM formatted file that contains the compartment.
Specify the header name as a char string or specify the index number of the header.



1 Functions — Alphabetical List

1-152

During import the sbionmimport function uses the information in the column
to interpret which compartment receives a dose or measured an observation. The
EventIDLabel property specifies whether the value is a dose or an observation.

Default: ''

'ContinuousCovariateLabels'

Identifies the column in the NONMEM formatted file that contains continuous
covariates. Specify the header name as a char string or specify the index number of
the header.

Default: {}

'DateLabel'

Identifies the column in the NONMEM formatted file that contains the date. Specify
the header name as a char string or specify the index number of the header. During
import the sbionmimport function uses the information in the column to interpret time
information for each dose, response and covariate measurement.

Default: ''

'DependentVariableLabel'

Identifies the column in the NONMEM formatted file that contains observations. Specify
the header name as a char string or specify the index number of the header.

Default: ''

'DoseLabel'

Identifies the column in the NONMEM formatted file that contains the dosing
information. Specify the header name as a char string or specify the index number of
the header.

Default: ''

'DoseIntervalLabel'

Identifies the column in the NONMEM formatted file that contains the time between
doses. Specify the header name as a char string or specify the index number of the
header.

Default: ''



 sbionmfiledef

1-153

'DoseRepeatLabel'

Identifies the column in the NONMEM formatted file that contains the number of times
(excluding the initial dose) that the dose is repeated. Specify the header name as a char
string or specify the index number of the header.

Default: ''

'EventIDLabel'

Identifies the column in the NONMEM formatted file that contains the event
identification specifying whether the value is a dose, observation, or covariate. Specify
the header name as a char string or specify the index number of the header.

Default: ''

'GroupLabel'

Identifies the column in the NONMEM formatted file that contains the Group ID. Specify
the header name as a char string or specify the index number of the header.

Default: ''

'MissingDependentVariableLabel'

Identifies the column in the NONMEM formatted file that contains information about
whether a row contains an observation event (0), or not (1). Specify the header name as a
char string or specify the index number of the header.

Default: ''

'RateLabel'

Identifies the column in the NONMEM formatted file that contains the rate of infusion.
Specify the header name as a char string or specify the index number of the header.

Default: ''

'TimeLabel'

Identifies the column in the NONMEM formatted file that contains the time or date
of observation. During import the sbionmimport function uses this information to
interpret when a dose was given, an observation or covariate measurement recorded.
Specify the header name as a char string or specify the index number of the header.



1 Functions — Alphabetical List

1-154

Default: ''

'Type'

Identifies the object as 'NMFileDef', (Read-only).

Output Arguments

nmdefObj

Defines the meanings of the file column headings. It contains properties for specifying
data items such as group, time and date. TimeLabel and DependentVariableLabel
must be specified.

Examples
Configure a NONMEM file definition object and import data from a NONMEM formatted
file.
 % Configure a NMFileDef object.

        def = sbionmfiledef;

        def.CompartmentLabel       = 'CPT';

        def.DoseLabel              = 'AMT';

        def.DoseIntervalLabel      = 'II';

        def.DoseRepeatLabel        = 'ADDL';

        def.GroupLabel             = 'ID';

        def.TimeLabel              = 'TIME';

        def.DependentVariableLabel = 'DV';

        def.EventIDLabel           = 'EVID';

 

        filename = 'C:\work\datafiles\dose.xls';

        ds = sbionmimport(filename, def);

More About

Tips

• Use sbionmfiledef with sbionmimport if you want to apply NONMEM
interpretation of headers, and the data file has column header labels different from
the table shown in “Support for Importing NONMEM Formatted Files”.



 sbionmfiledef

1-155

• Use sbionmimport if the data file has column header labels identical to the table
shown in “Support for Importing NONMEM Formatted Files”.

• “Importing Data”

See Also
sbionmimport



1 Functions — Alphabetical List

1-156

sbionmimport
Import NONMEM-formatted data

Syntax

data = sbionmimport('Filename')

data = sbionmimport (nmds)

data = sbionmimport('Filename', nmdefObj)

data = sbionmimport(_,'OutputFormat',dataFormat)

data = sbionmimport(_,'ParameterName',ParameterValue)

data = sbionmimport(nmds,nmdefObj)

data = sbionmimport(nmds,nmdefObj,'OutputFormat',dataFormat)

[data, PKDataObj] = sbionmimport(_)

Description

data = sbionmimport('Filename') or data = sbionmimport (nmds) converts
a NONMEM formatted file, and assumes that the file is configured to use the following
default values for column headers: ADDL, AMT, CMT, DATE , DV, EVID, ID, II, MDV, RATE,
TIME. See “Support for Importing NONMEM Formatted Files” for more information on
each of the headers.

data = sbionmimport('Filename', nmdefObj) imports a NONMEM formatted file
named Filename, into a SimBiology formatted dataset data using the meanings of the
file column headings defined in the NONMEM file definition object nmdefObj.

data = sbionmimport(_,'OutputFormat',dataFormat) returns a SimBiology
formatted dataset data in the specified format dataFormat which must be either
'dataset' or 'groupedData' (default). If it is 'groupedData', the function uses the
readtable method to read the data file and returns a groupedData object. If it is
'dataset', the dataset function is used and returns a dataset.

data = sbionmimport(_,'ParameterName',ParameterValue) accepts one or
more comma-separated name-value pairs that are accepted by the dataset function or
readtable method depending on what you have specified has the 'OutputFormat'. If
additional information is required to read the file such as the delimiter, specify required
name-value pairs. See dataset or readtable for a list of supported name-value pairs.



 sbionmimport

1-157

data = sbionmimport(nmds,nmdefObj) reads a NONMEM formatted dataset nmds
and returns a groupedData object data. Each variable in nmds must be a column
vector.

data = sbionmimport(nmds,nmdefObj,'OutputFormat',dataFormat) reads a
NONMEM formatted dataset nmds and returns a dataset or groupedData object as
specified by dataFormat.

[data, PKDataObj] = sbionmimport(_) returns a PKData object, PKDataObj
containing the dataset data. The PKDataObj properties show the labels specified in
data.

Input Arguments

Filename

If extension of Filename is .xls or .xlsx, sbionmimport assumes it to be an Excel
file. Otherwise sbionmimport assumes Filename is a text file. sbionmimport reads
the file using dataset or readtable.

nmds

NONMEM-formatted data, specified as a dataset, table, or groupedData object.
Each variable in nmds must be a column vector.

dataFormat

Data format, specified as a string which must be one of the following: 'groupedData'
(default) or 'dataset'. If 'groupedData', data is a groupedData object. If
'dataset', it is a dataset.

nmdefObj

nmdefObj defines the meanings of the file column headings. nmdefObj is a NONMEM
file definition object created using the sbionmfiledef function. It contains properties
for specifying data items such as group, time, and date. You must specify the TimeLabel
and the DependentVariableLabel properties.

When this argument is omitted or empty [], the default NONMEM interpretation is
used.



1 Functions — Alphabetical List

1-158

Output Arguments

data

groupedData object (default) or dataset. It contains a separate column for each dose
and observation. The Description property of data contains a list of warnings, if any,
that occurred while constructing data. To view the warnings, enter the following in the
command line.

data.Properties.Description

Use the 'OutputFormat' name-value pair argument to change the output format to the
dataset format.

PkDataObj

The PKData object defines the data to use in fitting and the roles of the columns used for
estimation. For more information, see PKData object.

Examples

Import a Dataset

Load a sample dataset.

load pheno ds;

The dataset contains 6 variables (columns). Display the names of these variables.

ds.Properties.VarNames

ans = 

    'ID'    'TIME'    'DOSE'    'WEIGHT'    'APGAR'    'CONC'

Define what these variables mean according to the NONMEM definition.

def = sbionmfiledef;

def.GroupLabel = 'ID';

def.TimeLabel = 'TIME';

def.DependentVariableLabel = 'CONC';

def.DoseLabel = 'DOSE'



 sbionmimport

1-159

def.ContinuousCovariateLabels = {'WEIGHT', 'APGAR'};

Import the dataset.

data = sbionmimport(ds,def);

Import a Dataset to a GroupedData object

Load a sample dataset.

load pheno ds;

The dataset contains 6 variables (columns). Display the names of these variables.

ds.Properties.VarNames

ans = 

    'ID'    'TIME'    'DOSE'    'WEIGHT'    'APGAR'    'CONC'

Define what these variables mean according to the NONMEM definition.

def = sbionmfiledef;

def.GroupLabel = 'ID';

def.TimeLabel = 'TIME';

def.DependentVariableLabel = 'CONC';

def.DoseLabel = 'DOSE'

def.ContinuousCovariateLabels = {'WEIGHT', 'APGAR'};

Import the dataset to a groupedData object.

grpData = sbionmimport(ds,def,'OutputFormat','groupedData');

Import Data from a GroupedData object

Load a sample dataset.

load pheno ds

Create a groupedData object.

grpData = groupedData(ds);

Use the groupedData object variable names and define what column headings or
variables mean according to the NONMEM definition.



1 Functions — Alphabetical List

1-160

def = sbionmfiledef;

def.GroupLabel = grpData.Properties.GroupVariableName;

def.TimeLabel = grpData.Properties.IndependentVariableName;

def.DependentVariableLabel = 'CONC';

def.DoseLabel = 'DOSE';

def.ContinuousCovariateLabels = {'WEIGHT', 'APGAR'};

Import the dataset.

data = sbionmimport(grpData,def);

More About
• “Importing Data”

See Also
sbionmfiledef



 sbioparamestim

1-161

sbioparamestim
Perform parameter estimation

Compatibility
sbioparamestim will be removed in a future release. Use sbiofit instead.

Compatibility
Statistics and Machine Learning Toolbox, Optimization Toolbox, and Global
Optimization Toolbox are recommended for this function.

Syntax
[k, result]= sbioparamestim(modelObj, tspan, xtarget, 

observed_array, estimated_array)

[ ___ ]= sbioparamestim( ___ , observed_array, estimated_array, k0)

[ ___ ]= sbioparamestim( ___ , observed_array, estimated_array, k0, 

method)

Arguments
k Vector of estimated parameter values. For all optimization

methods except 'fminsearch', the parameters are constrained
to be greater than or equal to 0.

result Structure with fields that provide information about the progress
of optimization.

modelObj SimBiology model object.
tspan n-by-1 vector representing the time span of the target data

xtarget.
xtarget n-by-m matrix, where n is the number of time samples and m is

the number of states to match during the simulation. The number
of rows in xtarget must equal the number of rows in tspan.



1 Functions — Alphabetical List

1-162

observed_array Either of the following:

• Array of objects (species, compartment, or nonconstant
parameter) in modelObj, whose values should be matched
during the estimation process

• Cell array of object names (species, compartment, or
nonconstant parameter) in modelObj, whose values should be
matched during the estimation process

Note: If duplicate names exist for any species or
parameters, ensure there are no ambiguities by specifying
either an array of objects or a cell array of qualified
names, such as compartmentName.speciesName or
reactionName.parameterName. For example, for a species
named sp1 that is in a compartment named comp2, the qualified
name is comp2.sp1.

The length of observed_array must equal the number of
columns in xtarget. sbioparamestim assumes that the order
of elements in observed_array is the same as the order of
columns in xtarget.

estimated_array Either of the following:

• Array of objects (compartment, species, or parameter) in
modelObj whose initial values should be estimated

• Cell array of names of objects (compartment, species, or
parameter) in modelObj whose initial values should be
estimated

Note: If duplicate names exist for any compartments,
species, or parameters, ensure there are no ambiguities
by specifying either an array of objects or a cell array of
qualified names, such as compartmentName.speciesName or
reactionName.parameterName. For example, for a parameter
named param1 scoped to a reaction named reaction1, the
qualified name is reaction1.param1.



 sbioparamestim

1-163

k0 Numeric vector containing the initial values of compartments,
species, or parameters to be estimated. The length of k0 must
equal that of estimated_array. If you do not specify k0, or
specify an empty vector for k0, then sbioparamestim takes
initial values for compartments, species, or parameters from
modelObj, or, if there are active variants, sbioparamestim
uses any initial values specified in the active variants. For details
about variants, see Variant object.



1 Functions — Alphabetical List

1-164

method Optimization algorithm to use during the estimation process,
specified by either of the following:

• String specifying one of the following functions:

• 'fminsearch'

• 'lsqcurvefit'

• 'lsqnonlin'

• 'fmincon'

• 'patternsearch'

• 'patternsearch_hybrid'

• 'ga'

• 'ga_hybrid'

• 'particleswarm'

• 'particleswarm_hybrid'

For descriptions of how sbioparamestim uses the previous
functions, see the Function Descriptions table.

• Two-element cell array, with the first element being one of the
previous functions, and the second element being an options
structure or object. Use an appropriate options structure or
object for each method listed next.

Method Options Structure or Object

'fminsearch' optimset

'fmincon'

'lsqcurvefit'

'lsqnonlin'

'particleswarm'

'particleswarm_hybrid'

optimoptions

'patternsearch'

'patternsearch_hybrid'

psoptimset or
optimoptions



 sbioparamestim

1-165

Method Options Structure or Object

'ga'

'ga_hybrid'

gaoptimset or
optimoptions

Tip Use a two-element cell array to provide your own options
structure for the optimization algorithm.

If you have Parallel Computing Toolbox, you can enable
parallel computing for faster data fitting by:

1 Opening a MATLAB worker pool:

parpool

2 Setting the name-value pair argument 'UseParallel' to
true in an options structure or object.

Function Descriptions

Function Description

fminsearch sbioparamestim uses the default options structure associated
with fminsearch, except for:
Display = 'off'

TolFun = 1e-6* (Initial value of objective function)

Note: 'fminsearch' is an unconstrained optimization method,
which can result in negative values for parameters.

lsqcurvefit Requires Optimization Toolbox.

sbioparamestim uses the default options structure associated
with lsqcurvefit, except for:
Display = 'off'

FiniteDifferenceStepSize = value of the
SolverOptions.RelativeTolerance property of the
configuration set associated with modelObj, with a minimum of
eps^(1/3)

FunctionTolerance = 1e-6* (Initial value of objective function)



1 Functions — Alphabetical List

1-166

Function Description

TypicalX = 1e-6* (Initial values of components to be estimated)
lsqnonlin Requires Optimization Toolbox.

sbioparamestim uses the default options structure associated
with lsqnonlin, except for:
Display = 'off'

FiniteDifferenceStepSize = value of the
SolverOptions.RelativeTolerance property of the
configuration set associated with modelObj, with a minimum of
eps^(1/3)

FunctionTolerance = 1e-6* (Initial value of objective function)
TypicalX = 1e-6* (Initial values of components to be estimated)

fmincon Requires Optimization Toolbox.

sbioparamestim uses the default options structure associated
with fmincon, except for:
Algorithm = 'interior-point'

Display = 'off'

FiniteDifferenceStepSize = value of the
SolverOptions.RelativeTolerance property of the
configuration set associated with modelObj, with a minimum of
eps^(1/3)

FunctionTolerance = 1e-6* (Initial value of objective function)
TypicalX = 1e-6* (Initial values of components to be estimated)

patternsearch Requires Global Optimization Toolbox.

sbioparamestim uses the default options structure associated
with patternsearch, except for:
Display = 'off'

FunctionTolerance = 1e-6* (Initial value of objective function)
MeshTolerance = 1.0e-3

AccelerateMesh = true

patternsearch_hybridRequires Global Optimization Toolbox.

sbioparamestim calls the patternsearch function with the
additional option SearchMethod = {@searchlhs,10,15}. This



 sbioparamestim

1-167

Function Description

option adds an additional search step that uses Latin hypercube
sampling.

The sbioparamestim function uses the default options structure
associated with patternsearch, except for:
Display = 'off'

FunctionTolerance = 1e-6* (Initial value of objective function)
MeshTolerance = 1.0e-3

AccelerateMesh = true

SearchMethod = {@searchlhs,10,15}

ga Requires Global Optimization Toolbox.

sbioparamestim uses the default options structure associated
with ga, except for:
Display = 'off'

FunctionTolerance = 1e-6* (Initial value of objective function)
PopulationSize = 10

Generations = 30

MutationFcn = @mutationadaptfeasible

ga_hybrid Requires Global Optimization Toolbox.

sbioparamestim calls the ga function with the additional option
HybridFcn = {@fmincon, fminopt}, where fminopt is the
same set of default options sbioparamestim uses for fmincon.
This option causes an additional gradient-based minimization after
the genetic algorithm step ends.

The sbioparamestim function uses the default options structure
associated with ga, except for:
Display = 'off'

FunctionTolerance = 1e-6* (Initial value of objective function)
PopulationSize = 10

Generations = 30

MutationFcn = @mutationadaptfeasible

HybridFcn = {@fmincon, structure of name/value pairs

for fmincon}

particleswarm Requires Global Optimization Toolbox.



1 Functions — Alphabetical List

1-168

Function Description

sbioparamestim uses the following default options for
particleswarm, except for:

Display          = 'off';

FunctionTolerance = 1e-6*[Initial objective function value]

SwarmSize        = 10;

MaxIter          = 30;

particleswarm_hybridRequires Global Optimization Toolbox.

sbioparamestim calls the particleswarm function with the
additional option HybridFcn = {@objFcn, options}. The
objective function, objFcn, is one of these supported functions:
patternsearch, fminsearch, fminunc, or fmincon. options is
a structure of options for these functions and their values.

Display          = 'off';

FunctionTolerance           = 1e-6*[Initial objective function value]

SwarmSize        = 10;

MaxIter          = 30;

HybridFcn        = {@fmincon, [Fmincon Options, described above]}

Note: sbioparamestim does not support setting the Vectorized option to 'on' in
algorithms that support this option.

Description

[k, result]= sbioparamestim(modelObj, tspan, xtarget, 

observed_array, estimated_array) estimates the initial values of compartments,
species, and parameters of modelObj, a SimBiology model object, specified in
estimated_array, so as to match the values of species and nonconstant parameters
given by observed_array with the target state, xtarget, whose time variation is given
by the time span tspan. If you have Optimization Toolbox installed, sbioparamestim
uses the lsqnonlin function as the default method for the parameter estimation. If
you do not have Optimization Toolbox installed, sbioparamestim uses the MATLAB
function fminsearch as the default method for the parameter estimation.



 sbioparamestim

1-169

[ ___ ]= sbioparamestim( ___ , observed_array, estimated_array, 

k0) specifies the initial values of compartments, species, and parameters listed in
estimated_array.

[ ___ ]= sbioparamestim( ___ , observed_array, estimated_array, k0, 

method) specifies the optimization method to use.

Examples

Given a model and some target data, estimate all of its parameters without explicitly
specifying any initial values:

1 Load a model from the project, gprotein_norules.sbproj. The project contains
two models, one for the wild-type strain (stored in variable m1), and one for the
mutant strain (stored in variable m2). Load the G protein model for the wild-type
strain.

sbioloadproject gprotein_norules m1;

2 Store the target data in a variable:

Gt = 10000;

tspan  = [0 10 30 60 110 210 300 450 600]';

Ga_frac = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

xtarget = Ga_frac * Gt;

3 Store all model parameters in an array:

p_array = sbioselect(m1,'Type','parameter');

4 Store the species that should match target:

Ga = sbioselect(m1,'Type','species','Name','Ga');

% In this example only one species is selected.

% To match more than one targeted species data

% replace with selected species array.

5 Estimate the parameters:

[k, result] = sbioparamestim(m1, tspan, xtarget, Ga, p_array)

k =

    0.0100

    0.0000



1 Functions — Alphabetical List

1-170

    0.0004

    4.0000

    0.0040

    1.0000

    0.0000

    0.1100

result = 

          fval: 1.4193e+06

      residual: [9x1 double]

      exitflag: 2

    iterations: 2

     funccount: 27

     algorithm: 'trust-region-reflective'

       message: [1x413 char]

Estimate parameters specified in p_array for species Ga using different algorithms. This
example uses data from the first example.

[k1,r1] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...

          {},'fmincon');

[k2,r2] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...

          {},'patternsearch');

[k3,r3] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...

          {},'ga');

[k4,r4] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...

   {},'particleswarm');

Estimate parameters specified in p_array for species Ga, and change default
optimization options to use user-specified options. This example uses data from the first
example.

myopt1 = optimoptions('Display','iter');

[k1,r1] = sbioparamestim(m1,tspan,xtarget, ...

          Ga,p_array,{},{'fmincon',myopt1});

myopt2 = optimoptions('MeshTolerance',1.0e-4); 

[k2,r2] = sbioparamestim(m1,tspan,xtarget, ...

          Ga,p_array,{},{'patternsearch',myopt2});

myopt3 = optimoptions('PopulationSize',25, 'Generations', 10);

[k3,r3] = sbioparamestim(m1,tspan,xtarget, ...

          Ga,p_array,{},{'ga',myopt3});



 sbioparamestim

1-171

myopt4 = optimoptions('particleswarm','Display','iter');

[k4,r4] = sbioparamestim(m1,tspan,xtarget,Ga,p_array,{},{'particleswarm',myopt4});

More About

Algorithms

sbioparamestim estimates parameters by attempting to minimize the discrepancy
between simulation results and the data to fit. The minimization uses one of these
optimization algorithms: fminsearch (from MATLAB); lsqcurvefit, lsqnonlinfit,
or fmincon (from Optimization Toolbox); or patternsearch or ga (from Global
Optimization Toolbox). All optimization methods require an objective function as an
input. This objective function takes as input a vector of parameter values and returns an
estimate of the discrepancy between simulation and data. When using lsqcurvefit or
lsqnonlinfit as the optimization method, this objective function returns a vector of
the residuals. For other optimization methods, the objective function returns the 2-norm
of the residuals.

References

[1] Yi, T-M., Kitano, H., and Simon, M.I. (2003) A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS 100, 10764–10769.

See Also
sbiomodel | optimset



1 Functions — Alphabetical List

1-172

sbioplot

Plot simulation results in one figure

Syntax

sbioplot(simDataObj)

sbioplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue)

Arguments

simDataObj A SimData object or an array of SimData objects,
containing data from simulation of a model.

fcnHandleValue Function handle.
xArgsValue Cell array with the names of the states.
yArgsValue Cell array with the names of the states.

Description

sbioplot(simDataObj) plots each simulation run for simDataObj, a SimBiology data
object or array of data objects, in the same figure. The plot is a time plot of each state in
simDataObj. The figure also shows a hierarchical display of all the runs in a tree, with
the ability to choose which trajectories to display.

sbioplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue) plots each
simulation run for the SimBiology data object, simDataObj, in the same figure. The
plot is created by calling the function handle, fcnHandleValue, with input arguments
simDataObj, xArgsValue, and yArgsValue.

xArgsValue and yArgsValue should be cell arrays with the names of the states. The
function represented by the function handle should return an array of handles and
names. The signature of the function is shown below.
function [handles, names] = functionName(simDataObj, xArgsValue, YArgsValue)



 sbioplot

1-173

The output argument handles is a two-dimensional array of handles to the lines plotted
by the function. Each column corresponds to a run and each row corresponds to the lines
being plotted for a state. names is a one-dimensional cell array that contains the names
to be displayed on the nodes which are children of a Run Node. The length of names
should be equal to the number of rows in the handles array returned.

Examples

Plot Data from an Ensemble Run

This example shows how to plot data from an ensemble run.

Load the radiodecay model.

sbioloadproject('radiodecay.sbproj','m1');

Configure the model to run with the stochastic solver. By default, there will be no
interpolation.

cs = getconfigset(m1, 'active');

cs.SolverType = 'ssa';

cs.SolverOptions.LogDecimation = 100;

Run an ensemble simulation and view the results.

simDataObj = sbioensemblerun(m1, 10, 'linear');

sbioplot(simDataObj);



1 Functions — Alphabetical List

1-174

See Also
sbiosubplot | SimData object



 sbioremovefromlibrary

1-175

sbioremovefromlibrary
Remove kinetic law, unit, or unit prefix from library

Syntax

sbioremovefromlibrary (Obj)

sbioremovefromlibrary ('Type', 'Name')

Description

sbioremovefromlibrary (Obj) removes the kinetic law definition, unit, or unit prefix
object (Obj) from the user-defined library. The removed component will no longer be
available automatically in future MATLAB sessions.

sbioremovefromlibrary does not remove a kinetic law definition that is being used in
a model.

You can use a built-in or user-defined kinetic law definition when you construct a kinetic
law object with the method addkineticlaw.

sbioremovefromlibrary ('Type', 'Name') removes the object of type 'Type' with
name 'Name' from the corresponding user-defined library. Type can be 'kineticlaw',
'unit' or 'unitprefix'.

To get a component of the built-in and user-defined libraries, use the
commands get(sbioroot, 'BuiltInLibrary') and get(sbioroot,
'UserDefinedLibrary').

To create a kinetic law definition, unit, or unit prefix, use sbioabstractkineticlaw,
sbiounit, or sbiounitprefix respectively.

To add a kinetic law definition, unit, or unit prefix to the user-defined library, use the
function sbioaddtolibrary.

Examples

This example shows how to remove a kinetic law definition from the user-defined library.



1 Functions — Alphabetical List

1-176

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('mylaw1', '(k1*s)/(k2+k1+s)');

2 Add the new kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You
can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index:    Library:       Name:     Expression:

1         UserDefined    mylaw1    (k1*s)/(k2+k1+s)  

3 Remove the kinetic law definition.

sbioremovefromlibrary('kineticlaw', 'mylaw1');

See Also
sbioaddtolibrary | sbioabstractkineticlaw | sbiounit | sbiounitprefix



 sbioreset

1-177

sbioreset

Delete all model objects

Syntax

sbioreset

Description

sbioreset deletes all SimBiology model objects at the root level. You cannot use a
SimBiology model object after it is deleted.

Tip To remove a SimBiology model object from the MATLAB workspace, without deleting
it from the root level, use the clear function.

Note: If the SimBiology desktop is open, calling sbioreset at the command line deletes
all model objects that are open in the desktop.

The SimBiology root object contains a list of SimBiology model objects, available units,
unit prefixes, and kinetic law objects. A SimBiology model object has its Parent property
set to the SimBiology root object.

To add a kinetic law definition to the SimBiology root user-defined library, use the
sbioaddtolibrary function. To add a unit to the SimBiology user-defined library
on the root, use sbiounit followed by sbioaddtolibrary. To add a unit prefix to
the SimBiology user-defined library on the root, use sbiounitprefix followed by
sbioaddtolibrary.

Examples

This example shows the difference between sbioreset and clear all.



1 Functions — Alphabetical List

1-178

1 Import a model into the workspace.

modelObj = sbmlimport('oscillator');

Note that the workspace contains modelObj and if you query the SimBiology root,
there is one model on the root object.

rootObj = sbioroot

SimBiology Root Contains:

 Models:                           1

 Builtin Abstract Kinetic Laws:    3

 User Abstract Kinetic Laws:       0

 Builtin Units:                    54

 User Units:                       0

 Builtin Unit Prefixes:            13

 User Unit Prefixes:               0

2 Use clear all to clear the workspace. The modelObj still exists on the rootObj.

clear all

rootObj

   

SimBiology Root Contains:

 Models:                           1

 Builtin Abstract Kinetic Laws:    3

 User Abstract Kinetic Laws:       0

 Builtin Units:                    54

 User Units:                       0

 Builtin Unit Prefixes:            13

 User Unit Prefixes:               0

3 Usesbioreset to delete the modelObj from the root.

sbioreset

rootObj

   

SimBiology Root Contains:

 Models:                           0

 Builtin Abstract Kinetic Laws:    3



 sbioreset

1-179

 User Abstract Kinetic Laws:       0

 Builtin Units:                    54

 User Units:                       0

 Builtin Unit Prefixes:            13

 User Unit Prefixes:               0

More About
• sbioroot

See Also
sbioaddtolibrary | sbioroot | sbiounit | sbiounitprefix



1 Functions — Alphabetical List

1-180

sbioroot

Return SimBiology root object

Syntax

rootObj = sbioroot

Arguments

rootObj Return sbioroot to this object.

Description

rootObj = sbioroot returns the SimBiology root object to root. The SimBiology root
object contains a list of the SimBiology model objects, available units, unit prefixes, and
available kinetic laws.

The units define the set of built-in units and user-defined units. See Unit object for
more information.

The unit prefixes define the set of built-in prefixes and user-defined prefixes. See Unit
Prefix object for more information.

The kinetic laws define the built-in kinetic laws and user-defined kinetic laws. See
AbstractKineticLaw object for more information.

To add a unit, prefix or kinetic law to the root (in the user-defined library), use the
sbioaddtolibrary function. To remove, use sbioremovefromlibrary.

The models opened in the SimBiology desktop are stored in the root object.



 sbioroot

1-181

Method Summary

Property Summary

More About
• sbiomodel

• addkineticlaw (reaction)

• sbioreset

See Also
addkineticlaw | UnitPrefix object | sbiomodel | sbioreset | Unit object



1 Functions — Alphabetical List

1-182

sbiosampleparameters
Generate parameters by sampling covariate model (requires Statistics and Machine
Learning Toolbox software)

Syntax

phi = sbiosampleparameters(covexpr,fe,omega,ds)

phi = sbiosampleparameters(covexpr,fe,omega,n)

[phi,covmodel] = sbiosampleparameters(_)

Description

phi = sbiosampleparameters(covexpr,fe,omega,ds) generates a matrix
phi containing sampled parameter values using the covariate model specified by the
covariate expression covexpr, fixed effects fe, covariance matrix omega, and covariate
data ds.

phi = sbiosampleparameters(covexpr,fe,omega,n) uses a scalar n that specifies
the number of rows in phi when the parameters are not dependent on any covariate.

[phi,covmodel] = sbiosampleparameters(_) returns a matrix phi and a
covariate model object covmodel using any of the input arguments from previous
syntaxes.

Examples

Sample Parameter Values from a Covariate Model

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or
more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure
of newborn health) were also recorded. Data was described in [1], a study funded by the
NIH/NIBIB grant P41-EB01975.



 sbiosampleparameters

1-183

Load the data.

load pheno.mat ds

Visualize the data.

t = sbiotrellis(ds,'ID','TIME','CONC','marker','o','markerfacecolor',[.7 .7 .7],'markeredgecolor','r','linestyle','none');

t.plottitle = 'States versus Time';

t.updateFigureForPrinting();

Create a one-compartment PK model with bolus dosing and linear clearance to model
such data.



1 Functions — Alphabetical List

1-184

pkmd = PKModelDesign;

pkmd.addCompartment('Central','DosingType','Bolus','EliminationType','linear-clearance','HasResponseVariable',true,'HasLag',false);

onecomp = pkmd.construct;

Suppose there is a correlation between the volume of the central compartment (Central)
and the weight of infants. You can define this parameter-covariate relationship using a
covariate model that can be described as

log( ) ,V WEIGHT
i V V

WEIGHT
i V i

= + * +q q h ,

where, for each ith infant, V is the volume, θs (thetas) are fixed effects, η (eta) represents
random effects, and WEIGHT is the covariate.

covM = CovariateModel;

covM.Expression = {'Central = exp(theta1+theta2*WEIGHT+eta1)'};

Define the fixed and random effects.

thetas = [1.4 0.05];

eta1 = [0.2];

Change the group label of ds to 'GROUP' as required by the sbiosampleparameters
function.

ds.Properties.VarNames{1} = 'GROUP';

Generate parameter values for the volumes of central compartments Central based on
the covariate model for all infants in the data set.

phi = sbiosampleparameters(covM.Expression,thetas,eta1,ds);

You can then simulate the model using the sampled parameter values. For convenience,
use the function-like interface provided by a SimFunction object.

First, construct a SimFunction object using the createSimFunction method,
specifying the volume (Central) as the parameter, and the drug concentration in the
compartment (Drug_Central) as the output of the SimFunction object, and the dosed
species.

f = createSimFunction(onecomp,covM.ParameterNames,'Drug_Central','Drug_Central');

The data set ds contains dosing information for each infant, and the groupedData
object provides a convenient way to extract such dosing information. Convert ds to a
groupedData object and extract dosing information.



 sbiosampleparameters

1-185

grpData = groupedData(ds);

doses = createDoses(grpData,'DOSE');

Simulate the model using the sampled parameter values from phi and the extracted
dosing information of each infant, and plot the results. The ith run uses the ith
parameter value in phi and dosing information of the ith infant.

sbiotrellis(f(phi,200, doses.getTable), [],'TIME','Drug_Central');

Input Arguments

covexpr — Covariate expressions
cell array of strings



1 Functions — Alphabetical List

1-186

Covariate expressions, specified as a cell array of strings that defines the parameter-
covariate relationships.

Note: See CovariateModel object to learn more about covariate expressions.

fe — Fixed effects
vector | dataset | table

Fixed effects, specified as a vector, dataset, or table containing values for fixed effect
parameters defined in the covariate expressions covexpr. Fixed effect parameter names
must start with 'theta'.

When fe is specified as a vector, it must be in the increasing order of the suffixes in
'theta' if they are numeric such as 'theta1', 'theta2', etc. If the suffixes are
nonnumeric or mixed, fe must be specified in ascending ASCII dictionary order.

Tip Use the sort function to sort a cell array of strings to see the ASCII dictionary order.

sort({'thetaone','theta2','thetax','theta4'})

ans = 

    'theta2'    'theta4'    'thetaone'    'thetax'

Then specify parameter values in the same order.

thetas = [0.1 1.3 0.3 4.1];

where 'theta2' has the value of 0.1, 'theta4', 1.3, etc.

omega — Covariance matrix of random effects
matrix | dataset | table

Covariance matrix of random effects, specified as a matrix or dataset or table. Random
effect parameter names must start with 'eta'.

When omega is specified as a matrix, it must be in the increasing order of suffixes in
'eta' such as 'eta1', 'eta2', etc. If the suffixes are nonnumeric or mixed, omega
must be specified in ascending ASCII dictionary order. An example of a diagonal
covariance matrix with three random effect parameters (eta1, eta2, and eta3) is



 sbiosampleparameters

1-187

Cov Cov Cov

Cov Cov Cov

( , ) ( , ) ( , )

( , ) ( , ) ( ,

h h h h h h

h h h h h h
1 1 1 2 1 3

2 1 2 2 2 33

3 1 3 2 3 3

1 0 0

0 2 0

0 0

)

( , ) ( , ) ( , )Cov Cov Cov

eta

eta

h h h h h h

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

eeta3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

If omega is a dataset, omega.Properties.VarNames must match the names of the
random effects.

If omega is a table, omega.Properties.VariableNames must match the names of the
random effects.

ds — Covariate data
dataset | table

Covariate data, specified as a dataset or table containing the covariate data for all
groups.

ds must have a column named 'Group' or 'GROUP' specifying the group labels as well
as a column each for all covariates used in the covariate model. The column names must
match the names of the corresponding covariates used in the covariate expressions.

n — Number of rows in phi
scalar

Number of rows in phi, specified as a scalar.

Output Arguments

phi — Sampled parameter values
matrix

Sampled parameter values, returned as a matrix of size S-by-P, where S is the number of
groups specified in ds or specified by n and P is the number of parameters which is equal
to the number of elements in covexpr.

covmodel — Covariate model
CovariateModel object

Covariate model, returned as a CovariateModel object which represents the model
defined by covexpr.



1 Functions — Alphabetical List

1-188

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–
83.

See Also
CovariateModel object | createSimFunction | sbiosampleerror |
SimFunction object



 sbiosampleerror

1-189

sbiosampleerror
Sample error based on error model and add noise to simulation data

Syntax

sdN = sbiosampleerror(sd,errormodel,errorparam)

Description

sdN = sbiosampleerror(sd,errormodel,errorparam) adds noise to the
simulation data sd using one or more error models errormodel and error parameters
errorparam.

Examples

Add Noise to Simulation Data

This example adds noise/error to the simulation data from a radioactive decay model

with the first-order reaction dz

dt
c x= i , where x and z are species and c is the forward rate

constant.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Simulate the model.

[t,sd,names] = sbiosimulate(m1);

Plot the simulation results.

plot(t,sd);

legend(names);

hold on



1 Functions — Alphabetical List

1-190

Add noise to the simulation results using the constant error model with the error
parameter set to 20.

sdNoisy = sbiosampleerror(sd,'constant',20);

Plot the noisy simulation data.

plot(t,sdNoisy);



 sbiosampleerror

1-191

Define a Custom Error Model Using a Function Handle

This example defines a custom error model using a function handle and adds noise to

simulation data of a radioactive decay model with the first-order reaction dz

dt
c x= i , where

x and z are species, and c is the forward rate constant.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;



1 Functions — Alphabetical List

1-192

Suppose you have a simple custom error model with a standard mean-zero and unit-
variance (Gaussian) normal variable e, simulation results f, and two parameters p1 and
p2: y f p p e= + + *1 2 .

Define a function handle that represents the error model.

em = @(y,p1,p2) y+p1+p2*randn(size(y));

Simulate the model.

[t,sd,names] = sbiosimulate(m1);

Plot the simulation results and hold the plot.

plot(t,sd);

legend(names);

hold on



 sbiosampleerror

1-193

Sample the error using the previously defined custom function with two parameters set
to 0.5 and 30, respectively.

sdNoisy = sbiosampleerror(sd,em,{0.5,30});

Plot the noisy simulation data.

plot(t,sdNoisy);



1 Functions — Alphabetical List

1-194

You can also apply a different error model to each state, which is a column in sd.
Suppose you want to apply the custom error model (em) to the first column (species x
data) and the proportional error model to the second column (species z data).

hold off

sdNoisy = sbiosampleerror(sd,{em,'proportional'},{{0.5,30},0.3});

plot(t,sd);

legend(names);

hold on

plot(t,sdNoisy);



 sbiosampleerror

1-195

Input Arguments

sd — Simulation results
SimData object | matrix

Simulation results, specified as a SimData object or matrix.

errormodel — Error model
string | function handle | cell array

Error model(s), specified as a string, function handle, or cell array containing strings,
function handles, or a mixture of strings and function handles.



1 Functions — Alphabetical List

1-196

If it is a cell array, its length must match the number of columns (responses) in sd, and
each error model is applied to the corresponding column in sd. If it is a single string or
function handle, the same error model is applied to all columns in sd.

The first argument of a function handle must be a matrix of simulation results.
The subsequent arguments are the parameters of the error model supplied in the
errorparam input argument. The output of the function handle must be a matrix of the
same size as the first input argument (simulation results).

For example, suppose you have a custom error model with a standard mean-zero and
unit-variance (Gaussian) normal variable e, simulation results f, and two parameters p1
and p2: y f p p e= + + *1 2 . You can define the corresponding function handle as follows.

em = @(y,p1,p2) y+p1+p2*randn(size(y));

where y is the matrix of simulation results and p1 and p2 are the error parameters.
The output of the function handle must be the same size as y, which is the same as the
simulation results specified in the sd input argument. The parameters p1 and p2 are
specified in the errorparam argument.

There are four built-in error models. Each model defines the error using a standard
mean-zero and unit-variance (Gaussian) variable e, simulation results f, and one or two
parameters a and b. The models are:

• 'constant': y f ae= +

• 'proportional': y f b f e= +

• 'combined': y f a b f e= + +( )

• 'exponential': y f ae= *exp( )

errorparam — Error model parameter
scalar | vector | cell array

Error model parameter(s), specified as a scalar, vector, or cell array. If errormodel is
'constant', 'proportional', or 'exponential', then errorparam is specified as a
numeric scalar. If it is 'combined', then errorparam is specified as a row vector with
two elements [a b].

If errormodel is a cell array, then errorparam must be a cell array of the same length.
In other words, errorparam must contain N elements, where N is the number of error



 sbiosampleerror

1-197

models in errormodel. Each element must have the correct number of parameters for
the corresponding error model.

For example, suppose you have three columns in sd, and you are applying a different
error model (constant, proportional, and exponential error models with error
parameters 0.1, 2, and 0.5, respectively) to each column, then errormodel and
errorparam must be cell arrays with three elements as follows.

errormodel = {'constant','proportional','exponential'};

errorparam = {0.1,2,0.5};

Output Arguments

sdN — Simulation results with added noise
vector of SimData objects | matrix

Simulation results with added noise, returned as a vector of SimData objects or numeric
matrix. If sd is a vector of SimData objects, sdN is also a vector of SimData objects, and
the error is added to each column in the sd.Data property. If sd is specified as a matrix,
sdN is a matrix, and the error is added to each column in the matrix.

See Also
createSimFunction | sbiosampleparameters | SimFunction object



1 Functions — Alphabetical List

1-198

sbiosaveproject
Save all models in root object

Syntax

sbiosaveproject projFilename

sbiosaveproject projFilename variableName

sbiosaveproject projFilename variableName1 variableName2 ...

Description

sbiosaveproject projFilename saves all models in the SimBiology root object
to the binary SimBiology project file named projFilename.sbproj. The project
can be loaded with sbioloadproject. sbiosaveproject returns an error if
projFilename.sbproj is not writable.

sbiosaveproject creates the binary SimBiology project file named
simbiology.sbproj. sbiosaveproject returns an error if this is not writable.

sbiosaveproject projFilename variableName saves only variableName.
variableName can be a SimBiology model or any MATLAB variable.

sbiosaveproject projFilename variableName1 variableName2 ... saves the
specified variables in the project.

Use the functional form of sbiosaveproject when the file name or variable names
are stored in a string. For example, if the file name is stored in the variable fileName
and you want to store MATLAB variables variableName1 and variableName2, type
sbiosaveproject (projFileName, 'variableName1', 'variableName2') at
the command line.

Examples

1 Import an SBML file and simulate (default configset object is used).

modelObj = sbmlimport ('oscillator.xml');    



 sbiosaveproject

1-199

timeseriesObj = sbiosimulate(modelObj);

2 Save the model and the simulation results to a project.

sbiosaveproject myprojectfile modelObj timeseriesObj

More About
• sbioloadproject

• sbiowhos

• sbioaddtolibrary

• sbioremovefromlibrary

See Also
sbioaddtolibrary | sbioloadproject | sbioremovefromlibrary | sbiowhos



1 Functions — Alphabetical List

1-200

sbioselect
Search for objects with specified constraints

Syntax

Out = sbioselect('PropertyName', PropertyValue)

Out = sbioselect('Where', 'PropertyName', 'Condition',

PropertyValue)

Out = sbioselect(Obj, 'PropertyName', PropertyValue)

Out = sbioselect(Obj, 'Type', 'TypeValue', 'PropertyName',

PropertyValue)

Out = sbioselect(Obj, 'Where', 'PropertyName', 'Condition',

PropertyValue)

Out = sbioselect(Obj, 'Where', 'PropertyNameCondition',

'PropertyNamePattern', 'Condition', PropertyValue)

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',

PropertyValue1, 'Where', 'PropertyName2', 'Condition2',

PropertyValue2,...)

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',

PropertyValue1,Bool_Operator, 'Where', 'PropertyName2',

'Condition2', PropertyValue2,...)

Out = sbioselect(Obj, 'Depth', DepthValue,...)

Arguments

Out Object or array of objects returned by the sbioselect function. Out
might contain a mixture of object types (for example, species and
parameters), depending on the selection you specify.

If PropertyValue is a cell array, then the function returns all
objects with the property 'PropertyName' that matches any
element of PropertyValue.

Obj SimBiology object or array of objects to search. If an object is not
specified, sbioselect searches the root.

PropertyName Any property of the object being searched.



 sbioselect

1-201

PropertyValue Specify PropertyValue to include in the selection criteria.
TypeValue Type of object to include in the selection, for example, sbiomodel,

species, reaction, or kineticlaw.
Condition The search condition. See the table under “Description” on page

1-201 for a list of conditions.
PropertyNameCondition Search condition that applies only to property names (which are

strings). See the table listing “Conditions for Properties Names or
String Values” below.

PropertyNamePattern String used to select the property name according to the condition
imposed by PropertyNameCondition.

DepthValue Specify the depth number to search. Valid numbers are positive
integer values and inf. If DepthValue is inf, sbioselect
searches Obj and all of its children. If DepthValue is 1,
sbioselect only searches Obj and not its children. By default,
DepthValue is inf.

Description
sbioselect searches for objects with specified constraints.

Out = sbioselect('PropertyName', PropertyValue) searches the root object
(including all model objects contained by the root object) and returns the objects with the
property name (PropertyName) and property value (PropertyValue) contained by the
root object.

Out = sbioselect('Where', 'PropertyName', 'Condition',

PropertyValue) searches the root object and finds objects that have a property name
(PropertyName) and value (PropertyValue) that matches the condition (Condition).

Out = sbioselect(Obj, 'PropertyName', PropertyValue) returns the objects
with the property name (PropertyName) and property value (PropertyValue) found
in any object (Obj). If the property name in a property-value pair contains either a
'?' or '*', then the name is automatically interpreted as a wildcard expression,
equivalent to the where clause ('Where', 'wildcard', 'PropertyName', '==',
PropertyValue).

Out = sbioselect(Obj, 'Type', 'TypeValue', 'PropertyName',

PropertyValue) finds the objects of type (TypeValue), with the property name



1 Functions — Alphabetical List

1-202

(PropertyName) and property value (PropertyValue) found in any object (Obj).
TypeValue is the type of SimBiology object to be included in the selection, for example,
species, reaction, or kineticlaw.

Out = sbioselect(Obj, 'Where', 'PropertyName', 'Condition',

PropertyValue) finds objects that have a property name (PropertyName) and value
(PropertyValue) that match the condition (Condition).

If you search for a string property value without specifying a condition, you must use
the same format as get returns. For example, if get returns the Name as 'MyObject',
sbioselect will not find an object with a Name property value of 'myobject'.
Therefore, for this example, you must specify:

modelObj = sbioselect ('Name', 'MyObject')

Instead, if you use a condition, you can specify:

modelObj = sbioselect ('Where', 'Name', '==i', 'myobject')

Thus, conditions let you control the specificity of your selection.

sbioselect searches for model objects on the root in both cases.

Out = sbioselect(Obj, 'Where', 'PropertyNameCondition',

'PropertyNamePattern', 'Condition', PropertyValue) finds objects with
a property name that matches the pattern in (PropertyNamePattern) with the
condition (PropertyNameCondition) and matches the value (PropertyValue) with
the condition (Condition). Use this syntax when you want search conditions on both
property names and property values.



 sbioselect

1-203

The conditions, with examples of property names and corresponding examples of
property values that you can use, are listed in the following tables. This table shows you
conditions for numeric properties.

Conditions for Numeric Properties Example Syntax

== Search in the model object (modelObj), and return parameter
objects that have Value equal to 0.5. sbioselect returns
parameter objects because only parameter objects have a
property called Value.

parameterObj = sbioselect (modelObj,...

 'Where', 'Value', '==', 0.5)

In the case of ==, this is equivalent to omitting the condition as
shown:

parameterObj = sbioselect (modelObj,...

'Value', 0.5)

Search in the model object (modelObj), and return parameter
objects that have ConstantValue false (nonconstant
parameters).

parameterObj = sbioselect (modelObj,...

 'Where', 'ConstantValue', '==', false)

~= Search in the model object (modelObj), and return parameter
objects that do not have Value equal to 0.5.

parameterObj = sbioselect (modelObj,...

 'Where', 'Value', '~=', 0.5)

>,<,>=,<= Search in the model object (modelObj), and return species
objects that have an initial amount (InitialAmount) greater
than 50.

speciesObj = sbioselect (modelObj, ...

 'Where', 'InitialAmount', '>', 50)

Search in the model object (modelObj), and return species
objects that have an initial amount (InitialAmount) less than
or equal to 50.

speciesObj = sbioselect (modelObj,...

 'Where', 'InitialAmount', '<=', 50)



1 Functions — Alphabetical List

1-204

Conditions for Numeric Properties Example Syntax

between Search in the model object (modelObj), and return species
objects that have an initial amount (InitialAmount) between
200 and 300.

speciesObj = sbioselect (modelObj,...

 'Where', 'InitialAmount',...

 'between', [200 300])

~between Search in the model object (modelObj), and return species
objects that have an initial amount (InitialAmount) that is
not between 200 and 300.

speciesObj = sbioselect (modelObj,...

 'Where', 'InitialAmount',...

 '~between', [200 300])

equal_and_same_type Similar to ==, but in addition requires the property value to be
of the same type.

Search in the model object (modelObj), and return all objects
containing a property of type double and a value equal to 0.
(Using '==' would also select objects containing a property
with a value of false.)

zeroObj = sbioselect(modelObj, ...

 'Where', '*', 'equal_and_same_type', 0);

unequal_and_same_type Similar to ~=, but in addition requires the property value to be
of the same type.

Select all objects containing a property of type double and value
not equal to 0. (Using '~=' would also select objects containing
a property with a value of true.)

nonzeroObj = sbioselect(modelObj, ...

'Where', '*', 'unequal_and_same_type', 0);



 sbioselect

1-205

The following table shows you conditions for properties names or for properties whose
values are strings.

Conditions for Properties Names or
String Values

Example Syntax

== Search in the model object (modelObj), and return species
objects named 'Glucose'.

speciesObj = sbioselect (modelObj,...

 'Type', 'species', 'Where',...

 'Name', '==', 'Glucose')

~= Search in the model object (modelObj), and return species
objects that are not named 'Glucose'.

speciesObj = sbioselect (modelObj,...

 'Type', 'species', 'Where',...

 'Name', '~=', 'Glucose')

==i Same as ==; in addition, this is case insensitive.
~=i Search in the model object (modelObj), and return species

objects that are not named 'Glucose', ignoring case.

speciesObj = sbioselect (modelObj,...

 'Type', 'species', 'Where',...

 'Name', '~=i', 'glucose')

regexp. Supports expressions
supported by the functions
regexp and regexpi.

Search in the model object (modelObj), and return objects
that have 'ese' or 'ase' anywhere within the name.

Obj = sbioselect (modelObj, 'Where',...

 'Name', 'regexp', '[ea]se')

Search in the root, and return objects that have kinase
anywhere within the name.

Obj = sbioselect ('Where',...

 'Name', 'regexp', 'kinase')

Note that this query could result in a mixture of object types
(for example, species and parameters).

regexpi Same as regexp; in addition, this is case insensitive.
~regexp Search in the model object (modelObj), and return objects

that do not have kinase anywhere within the name.



1 Functions — Alphabetical List

1-206

Conditions for Properties Names or
String Values

Example Syntax

Obj = sbioselect (modelObj, 'Where',...

 'Name', '~regexp', 'kinase')

~regexpi Same as ~regexp; in addition, this is case insensitive.
wildcard Supports DOS-style wildcards ('?' matches any single

character, '*' matches any number of characters, and the
pattern must match the entire string). See regexptranslate
for more information.

wildcardi Same as wildcard; in addition, this is case insensitive.
~wildcard Search in the model object (modelObj), and return objects

that have names that do not begin with kin*.

Obj = sbioselect (modelObj, 'Where',...

 'Name', '~wildcard', 'kin*')

~wildcardi Same as ~wildcard; in addition, this is case insensitive.



 sbioselect

1-207

Use the condition type function for any property. The specified value should be a
function handle that, when applied to a property value, returns a boolean indicating
whether there is a match. The following table shows an example of using function.

Condition Example Syntax

'function' Search in the model object and return reaction objects
whose Stoichiometry property contains the specified
stoichiometry.

Out = sbioselect(modelObj, 'Where',...

'Stoichiometry', 'function',...

 @(x)any(x>2))

Select all objects with a numeric value that is even.

iseven = @(x) isnumeric(x)...

 && isvector(x) && mod(x, 2) == 0; 

evenValuedObj = sbioselect(modelObj, ...

'where', 'Value', 'function', iseven); 

The condition 'contains' can be used only for those properties whose values are an
array of SimBiology objects. The following table shows an example of using contains.

Condition Example Syntax

'contains' Search in the model object and return reaction objects whose
Reactant property contains the specified species.

Out = sbioselect(modelObj, 'Where',...

'Reactants', 'contains',...

 modelObj.Species(1))

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',

PropertyValue1, 'Where', 'PropertyName2', 'Condition2',

PropertyValue2,...) finds objects contained by Obj that matches all the conditions
specified.

You can combine any number of property name/property value pairs and conditions in
the sbioselect command.

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',

PropertyValue1,Bool_Operator, 'Where', 'PropertyName2',

'Condition2', PropertyValue2,...) finds objects contained by Obj that matches
all the conditions specified. Supported strings for Bool_Operator are as follows.



1 Functions — Alphabetical List

1-208

'and' True if ( 'Where', 'PropertyName1','Condition1',PropertyValue1) and (
'Where', 'PropertyName2','Condition2',PropertyValue2) are both true.

'or' True if either ( 'Where', 'PropertyName1','Condition1',PropertyValue1)
or ( 'Where', 'PropertyName2','Condition2',PropertyValue2) is true.

'xor' True if exactly one of ( 'Where',
'PropertyName1','Condition1',PropertyValue1) or ( 'Where',
'PropertyName2','Condition2',PropertyValue2) is true.

'not' True if ( 'Where', 'PropertyName1','Condition1',PropertyValue1) is true
and ( 'Where', 'PropertyName2','Condition2',PropertyValue2) is not
true.

Compound expressions with multiple boolean operators are supported. Precedence of the
operators follows the order of operations for boolean algebra not –> and –> xor –> or.

Out = sbioselect(Obj, 'Depth', DepthValue,...) finds objects using a model
search depth of DepthValue.

Note: The order of results from sbioselect is not guaranteed when returning results of
multiple types. Hence it is not recommended to depend on the order of results.

Examples

Find Species from a SimBiology Model

Import a model.

modelObj = sbmlimport('oscillator');

Find and return an object named pA.

Obj = sbioselect(modelObj, 'Name', 'pA');

Find and return species objects whose Name starts with p and have A or B as the next
letter in the name.
speciesObj = sbioselect(modelObj, 'Type', 'species', 'Where',...

 'Name', 'regexp', '^p[AB]');

Find a cell array. Note how cell array values must be specified inside another cell array.



 sbioselect

1-209

modelObj.Species(2).UserData = {'a' 'b'}; 

Obj = sbioselect(modelObj, 'UserData', {{'a' 'b'}})

SimBiology Species Array

Index:    Compartment:    Name:    InitialAmount:  InitialAmountUnits:

1         unnamed         pB       0                  

Find and return objects that do not have their units set.
unitlessObj = sbioselect(modelObj, 'Where', 'wildcard', '*Units', '==', '');

Alternatively, you can do the following.
unitlessObj = sbioselect(modelObj, '*Units', '');

See Also
regexp



1 Functions — Alphabetical List

1-210

sbioshowunitprefixes

Show unit prefixes in library

Syntax

UnitPrefixObjs = sbioshowunitprefixes

[Name, Multiplier] = sbioshowunitprefixes

[Name, Multiplier, Builtin] = sbioshowunitprefixes

[Name, Multiplier, Builtin] = sbioshowunitprefixes('Name')

Arguments

unitPrefixObjs Vector of unit prefix objects from the BuiltInLibrary
and UserDefinedLibrary properties of the Root
object.

Name Name of the built-in or user-defined unit prefix. Built-in
prefixes are defined based on the International System
of Units (SI).

Multiplier Shows the value of 10^Exponent that defines the
relationship of the unit prefix Name to the base unit. For
example, the multiplier in picomole is 10e-12.

Builtin An array of logical values. If Builtin is true for a unit
prefix, the unit prefix is built in. If Builtin is false for a
unit prefix, the unit prefix is user defined.

Description

sbioshowunitprefixes returns information about unit prefixes in the SimBiology
library.

UnitPrefixObjs = sbioshowunitprefixes returns the unit prefixes in the library
as a vector of unit prefix objects in UnitPrefixObjs.



 sbioshowunitprefixes

1-211

[Name, Multiplier] = sbioshowunitprefixes returns the multiplier for each
prefix in Name to Multiplier as a cell array of strings.

[Name, Multiplier, Builtin] = sbioshowunitprefixes returns whether the
unit prefix is built in or user defined for each unit prefix in Name to Builtin.

[Name, Multiplier, Builtin] = sbioshowunitprefixes('Name') returns the
name, multiplier, and built-in status for the unit prefix with name Name. Name can be a
cell array of strings.

Examples
[name, multiplier] = sbioshowunitprefixes;

[name, multiplier] = sbioshowunitprefixes('nano');

See Also
sbioconvertunits | sbioshowunits | sbiounitprefix



1 Functions — Alphabetical List

1-212

sbioshowunits
Show units in library

Syntax

unitObjs = sbioshowunits

[Name, Composition] = sbioshowunits

[Name, Composition, Multiplier] = sbioshowunits

[Name, Composition, Multiplier, Offset] = sbioshowunits

[Name, Composition, Multiplier, Offset, Builtin] = sbioshowunits

[Name, Composition, Multiplier, Offset, Builtin] =

sbioshowunits('Name')

Arguments

unitObjs Vector of unit objects from the BuiltInLibrary and
UserDefinedLibrary properties of the Root object.

Name Name of the built-in or user-defined unit.
Composition Shows the combination of base and derived units that

defines the unit Name. For example, molarity is mole/
liter.

Multiplier The numerical value that defines the relationship
between the unit Name and the base or derived unit as a
product of the Multiplier and the base unit or derived
unit. For example, 1 mole is 6.0221e23*molecule.
The Multiplier is 6.0221e23.

Offset Numerical value by which the unit composition is
modified from the base unit. For example, °Celsius =
(5/9)*(°Fahrenheit-32); Multiplier is 5/9 and
Offset is –32.

Builtin An array of logical values. If Builtin is true for a unit,
the unit is built in. If Builtin is false for a unit, the
unit is user defined.



 sbioshowunits

1-213

Description

unitObjs = sbioshowunits returns the units in the library to unitObjs as a vector
of unit objects.

[Name, Composition] = sbioshowunits returns the composition for each unit in
Name to Composition as a cell array of strings.

[Name, Composition, Multiplier] = sbioshowunits returns the multiplier for
the unit with name Name to Multiplier.

[Name, Composition, Multiplier, Offset] = sbioshowunits returns
the offset for the unit with name Name to Offset. The unit is defined as
Multiplier*Composition+Offset.

[Name, Composition, Multiplier, Offset, Builtin] = sbioshowunits

returns whether the unit is built in or user defined for each unit in Name to Builtin.

[Name, Composition, Multiplier, Offset, Builtin] =

sbioshowunits('Name') returns the name, composition, multiplier, offset and built-in
status for the unit with name Name. Name can be a cell array of strings.

Examples
[name, composition] = sbioshowunits;

[name, composition] = sbioshowunits('molecule');

See Also
sbioconvertunits | sbioshowunitprefixes | sbiounit



1 Functions — Alphabetical List

1-214

sbiosimulate
Simulate SimBiology model

Syntax

[time,x,names] = sbiosimulate(modelObj)

[time,x,names] = sbiosimulate(modelObj,optionObj)

[time,x,names] = sbiosimulate(modelObj,csObj,dvObj)

[time,x,names] = sbiosimulate(modelObj,csObj,variantObj,doseObj)

simDataObj = sbiosimulate( ___ )

Description

[time,x,names] = sbiosimulate(modelObj) returns simulation results in three
outputs, time, vector of time samples, x, simulation data, and names, column labels of
simulation data x. This function simulates the SimBiology model modelObj while using
the model’s active configuration set along with its active doses and variants, if available.

[time,x,names] = sbiosimulate(modelObj,optionObj) returns simulation
results using an option object specified by optionObj that can be one of the following:

• Configset object

• Variant object

• ScheduleDose object

• RepeatDose object

• Array of doses or variants

[time,x,names] = sbiosimulate(modelObj,csObj,dvObj) returns simulation
results using a configset object csObj and dose, variant, or an array of doses or variants
specified by dvObj. If you set csObj to [], then the function uses the model’s currently
active configset object.

[time,x,names] = sbiosimulate(modelObj,csObj,variantObj,doseObj)

returns simulation results using a configset object csObj, variant object or variant array
specified by variantObj, and dose object or dose array specified by doseObj.



 sbiosimulate

1-215

simDataObj = sbiosimulate( ___ ) returns simulation results in a SimData
object simDataObj using any of the input arguments in the preceding syntaxes.

Examples

Simulate a SimBiology Model

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Change the simulation stop time to 15 seconds.

csObj = getconfigset(m1,'active');

set(csObj,'Stoptime',15);

Simulate the model and return outputs in an array.

[t,x,n] = sbiosimulate(m1);

Plot the simulated results for species x and z.

figure;

plot(t,x)

xlabel('Time')

ylabel('States')

title('States vs Time')

legend('species x','species z')



1 Functions — Alphabetical List

1-216

You can also return the results to a SimData object .

simData = sbiosimulate(m1);

Plot the simulated results.

sbioplot(simData);



 sbiosimulate

1-217

Simulate a SimBiology Model Using an Array of Dose Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add two doses of 100 molecules each for species x, scheduled at 2 and 4 seconds
respectively.

dObj1 = adddose(m1,'d1','schedule');

dObj1.Amount = 100;

dObj1.AmountUnits = 'molecule';

dObj1.TimeUnits = 'second';

dObj1.Time = 2;

dObj1.TargetName = 'unnamed.x';

dObj2 = adddose(m1,'d2','schedule');

dObj2.Amount = 100;

dObj2.AmountUnits = 'molecule';

dObj2.TimeUnits = 'second';

dObj2.Time = 4;

dObj2.TargetName = 'unnamed.x';

Simulate the model using no dose or any subset of the dose array.

sim1 = sbiosimulate(m1);



1 Functions — Alphabetical List

1-218

sim2 = sbiosimulate(m1,dObj1);

sim3 = sbiosimulate(m1,dObj2);

sim4 = sbiosimulate(m1,[dObj1,dObj2]);

Plot the results.

sbioplot(sim1)

sbioplot(sim2)



 sbiosimulate

1-219

sbioplot(sim3)



1 Functions — Alphabetical List

1-220

sbioplot(sim4)



 sbiosimulate

1-221

Simulate a SimBiology Model Using Configset and Dose Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(m1,'default');

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');

dObj.Amount = 100;

dObj.AmountUnits = 'molecule';



1 Functions — Alphabetical List

1-222

dObj.TimeUnits = 'second';

dObj.Time = 2;

dObj.TargetName = 'unnamed.x';

Simulate the model using configset and dose objects.

sim = sbiosimulate(m1,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);

Simulate a SimBiology Model Using Configset, Dose, and Variant Objects

Load a sample SimBiology model.



 sbiosimulate

1-223

sbioloadproject radiodecay.sbproj

Add a new configuration set using a stop time of 15 seconds.

csObj = m1.addconfigset('newStopTimeConfigSet');

csObj.StopTime = 15;

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');

dObj.Amount = 100;

dObj.AmountUnits = 'molecule';

dObj.TimeUnits = 'second';

dObj.Time = 2;

dObj.TargetName = 'unnamed.x';

Add a variant of species x using a different initial amount of 500 molecules.

vObj = addvariant(m1,'v1');

addcontent(vObj,{'species','x','InitialAmount',500});

Simulate the model using the same configset, variant, and dose objects. Use the same
order of input arguments as shown next.

sim = sbiosimulate(m1,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);



1 Functions — Alphabetical List

1-224

Input Arguments

modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The model minimally needs
one reaction or rate rule for simulations.

optionObj — Option object
configset object | variant object or array of variant objects | dose object or array of dose
objects



 sbiosimulate

1-225

Option object, specified as a configset object , variant object , an array of
variant objects, ScheduleDose object , RepeatDose object , or an array of dose
objects.

csObj — Configuration set object
configset object | []

Configuration set object, specified as a configset object that stores simulation-
specific information. When you specify csObj as [], sbiosimulate uses the currently
active configset object.

If your model contains events, the csObj object cannot specify 'expltau' or 'impltau'
for the SolverType property.

If your model contains doses, the csObj object cannot specify 'ssa', 'expltau', or
'impltau' for the SolverType property.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects | []

Dose or variant object, specified as a ScheduleDose object , RepeatDose object ,
an array of dose objects, variant object , or an array of variant objects.

• Use [] when you want to explicitly exclude any variant objects from the
sbiosimulate function.

• When dvObj is a dose object, sbiosimulate uses the specified dose object as well as
any active variant objects if available.

• When dvObj is a variant object, sbiosimulate uses the specified variant object as
well as any active dose objects if available.

variantObj — Variant object
variant object or array of variant objects | []

Variant object, specified as a variant object or an array of variant objects. Use []
when you want to explicitly exclude any variant objects from sbiosimulate.

doseObj — Dose object
dose object or array of dose objects | []

Dose object, specified as a ScheduleDose object , RepeatDose object , or an array
of dose objects. A dose object defines additions that are made to species amounts or



1 Functions — Alphabetical List

1-226

parameter values. Use [] when you want to explicitly exclude any dose objects from
sbiosimulate.

Output Arguments

time — Vector of time samples
vector

Vector of time samples, returned as an n-by-1 vector containing the simulation time
steps. n is the number of time samples.

x — Simulation data
array

Simulation data, returned as an n-by-m data array, where n is the number of time
samples and m is the number of states logged in the simulation. Each column of x
describes the variation in the quantity of a species, compartment, or parameter over
time.

names — Names of species, compartments, or parameters
cell array of strings

Names of species, compartments, or parameters, returned as an m-by-1 cell array of
strings. In other words, names contains the column labels of the simulation data, x. If the
species are in multiple compartments, species names are qualified with the compartment
name in the form compartmentName.speciesName.

simDataObj — Simulation data
SimData object

Simulation data, returned as a SimData object that holds time and state data as well
as metadata, such as the types and names for the logged states or the configuration
set used during simulation. You can access time, data, and names stored in a SimData
object by using its properties.

See Also
addconfigset | Configset object | getconfigset | Model object |
RepeatDose object | sbioaccelerate | sbiomodel | ScheduleDose object |
setactiveconfigset | SimData object | Variant object



 sbiosteadystate

1-227

sbiosteadystate
Find steady state of SimBiology model

Syntax

[success, variant_out] = sbiosteadystate(model)

[success, variant_out] = sbiosteadystate(model, variant_in)

[success, variant_out] = sbiosteadystate(model, variant_in, 

scheduleDose)

[success, variant_out, model_out] = sbiosteadystate(model, ___ )

[ ___ ] = sbiosteadystate( ___ , Name,Value)

Description

[success, variant_out] = sbiosteadystate(model) attempts to find a steady
state of a SimBiology model, model. The function returns success, which is true if
a steady state was found, and a SimBiology variant object, variant_out, with
all non-constant species, compartments, and parameters of the model having the
steady-state values. If a steady state was not found, then the success is false and
variant_out contains the last values found by the algorithm.

[success, variant_out] = sbiosteadystate(model, variant_in) applies
the alternate quantity values stored in a SimBiology variant object, variant_in, to the
model before trying to find the steady-state values.

[success, variant_out] = sbiosteadystate(model, variant_in, 

scheduleDose) applies a SimBiology ScheduleDose object, scheduleDose, or a
vector of schedule doses to the corresponding model quantities before trying to find the
steady state values. Only doses at time = 0 are allowed, that is, the dose time of each
dose object must be 0. To specify a dose without specifying a variant, set variant_in to
an empty array, [].

[success, variant_out, model_out] = sbiosteadystate(model, ___ )

returns a SimBiology model, model_out that is a copy of the input model with the
states set to the steady-state solution that was found. Also, model_out has all initial
assignment rules disabled.



1 Functions — Alphabetical List

1-228

[ ___ ] = sbiosteadystate( ___ , Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Examples

Find a steady state of a simple gene regulation model

This example shows how to find a steady state of a simple gene regulation model, where
the protein product from translation controls transcription.

Load the sample SimBiology project containing the model, m1. The model has five
reactions and four species.

sbioloadproject('gene_reg.sbproj','m1')

Display the model reactions.

m1.Reactions

   SimBiology Reaction Array

   Index:    Reaction:

   1         DNA -> DNA + mRNA

   2         mRNA -> mRNA + protein

   3         DNA + protein <-> DNA_protein

   4         mRNA -> null

   5         protein -> null

A steady state calculation attempts to find the steady state values of non-constant
quantities. To find out which model quantities are non-constant in this model, use
sbioselect.

sbioselect(m1,'Where','Constant*','==',false)

   SimBiology Species Array

   Index:    Compartment:    Name:          InitialAmount:    InitialAmountUnits:

   1         unnamed         DNA            50                molecule

   2         unnamed         DNA_protein    0                 molecule



 sbiosteadystate

1-229

   3         unnamed         mRNA           0                 molecule

   4         unnamed         protein        0                 molecule

There are four species that are not constant, and the initial amounts of three of them are
set to zero.

Use sbiosteadystate to find the steady state values for those non-constant species.

[success,variantOut] = sbiosteadystate(m1)

success =

     1

   SimBiology Variant - SteadyState (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:

   1                 compartment  unnamed           Capacity            1

   2                 species      DNA               InitialAmount       8.79024

   3                 species      DNA_protein       InitialAmount       41.2098

   4                 species      mRNA              InitialAmount       1.17203

   5                 species      protein           InitialAmount       23.4406

   6                 parameter    Transcription.k1  Value               0.2

   7                 parameter    Translation.k2    Value               20

   8                 parameter    [Binding/Unbin... Value               0.2

   9                 parameter    [Binding/Unbin... Value               1

   10                parameter    [mRNA Degradat... Value               1.5

   11                parameter    [Protein Degra... Value               1

The initial amounts of all species of the model have been set to the steady-state values.
DNA is a conserved species since the total of DNA and DNA_protein is equal to 50.

You can also use a variant to store alternate initial amounts and use them during the
steady state calculation. For instance, you could set the initial amount of DNA to 100
molecules instead of 50.

variantIn = sbiovariant('v1');

variantIn.addcontent({'species','DNA','InitialAmount',100});

[success2,variantOut2,m2] = sbiosteadystate(m1,variantIn)



1 Functions — Alphabetical List

1-230

success2 =

     1

   SimBiology Variant - SteadyState (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:

   1                 compartment  unnamed           Capacity            1

   2                 species      DNA               InitialAmount       12.7876

   3                 species      DNA_protein       InitialAmount       87.2124

   4                 species      mRNA              InitialAmount       1.70502

   5                 species      protein           InitialAmount       34.1003

   6                 parameter    Transcription.k1  Value               0.2

   7                 parameter    Translation.k2    Value               20

   8                 parameter    [Binding/Unbin... Value               0.2

   9                 parameter    [Binding/Unbin... Value               1

   10                parameter    [mRNA Degradat... Value               1.5

   11                parameter    [Protein Degra... Value               1

   SimBiology Model - cell 

   Model Components:

     Compartments:      1

     Events:            0

     Parameters:        6

     Reactions:         5

     Rules:             0

     Species:           4

Since the algorithm has found a steady state, the third output m2 is the steady state
model, where the values of non-constant quantities have been set to steady state values.
In this example, the initial amounts of all four species have been updated to steady state
values.

m2.Species

   SimBiology Species Array

   Index:    Compartment:    Name:          InitialAmount:    InitialAmountUnits:

   1         unnamed         DNA            12.7876           molecule

   2         unnamed         DNA_protein    87.2124           molecule



 sbiosteadystate

1-231

   3         unnamed         mRNA           1.70502           molecule

   4         unnamed         protein        34.1003           molecule

Input Arguments

model — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

variant_in — SimBiology variant
variant object

SimBiology variant, specified as a variant object. The alternate quantity values
stored in the variant are applied to the model before finding the steady state.

scheduleDose — Dosing information
SimBiology schedule dose object

Dosing information, specified as a SimBiology ScheduleDose object. The dose must
be bolus, that is, there must be no time lag or administration time for the dose. In other
words, its LagParameterName and DurationParameterName properties must be
empty, and the dose time (the Time property) must be 0. For details on how to create a
bolus dose, see “Creating Dose Objects”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AbsTol',1e-6 specifies to use the absolute tolerance value of 10–6.

'AbsTol' — Absolute tolerance to detect convergence
1e-8 (default) | positive, real scalar

Absolute tolerance to detect convergence, specified as a positive, real scalar. The
algorithm converges and reports a steady state if the algorithm finds model states by



1 Functions — Alphabetical List

1-232

forward integration, such that dS

dt
AbsTol or

dS

dt
RelTol S

ur ur

ur

<
Ê

Ë
ÁÁ

ˆ

¯
˜̃ < *

Ê

Ë
ÁÁ

ˆ

¯
˜̃ , where S

ur

 is a

vector of non-constant species, parameters, and compartments.

'RelTol' — Relative tolerance to detect convergence
1e-6 (default) | positive, real scalar

Relative tolerance to detect convergence, specified as a positive, real scalar. The
algorithm converges and reports a steady state if the algorithm finds model states by

forward integration, such that dS

dt
AbsTol or

dS

dt
RelTol S

ur ur

ur

<
Ê

Ë
ÁÁ

ˆ

¯
˜̃ < *

Ê

Ë
ÁÁ

ˆ

¯
˜̃ , where S

ur

 is a

vector of non-constant species, parameters, and compartments.

'MaxStopTime' — Maximum amount of simulation time to take before terminating without a
steady state
100000 (default) | positive integer

Maximum amount of simulation time to take before terminating without a steady state,
specified as a positive integer.

'MinStopTime' — Minimum amount of simulation time to take before searching for a steady
state
1 (default) | positive integer

Minimum amount of simulation time to take before searching for a steady state, specified
as a positive integer.

Output Arguments

success — Flag to indicate if a steady state of the model is found
true | false

Flag to indicate if a steady state of the model is found, returned as true or false.

variant_out — SimBiology variant
variant object



 sbiosteadystate

1-233

SimBiology variant, returned as a variant object. The variant includes all species,
parameters, and compartments of the model with the non-constant quantities having the
steady-state values.

model_out — SimBiology model at the steady state
model object

SimBiology model at the steady state, returned as a model object. model_out is a copy
of the input model, with the non-constant species, parameters, and compartments set
to the steady-state values. Also, model_out has all initial assignment rules disabled.
Simulating the model at steady state requires that initial assignment rules be inactive,
since these rules can modify the values in variant_out.

Note: If you decide to commit the variant_out to the input model that has initial
assignment rules, then model is not expected to be at the steady state because the rules
will perturb the system when you simulate the model.

See Also
commit | Model object | sbioaccelerate | sbiomodel | sbiosimulate |
sbiovariant | ScheduleDose object | Variant object

Introduced in R2016a



1 Functions — Alphabetical List

1-234

sbiosubplot
Plot simulation results in subplots

Syntax

sbiosubplot(simDataObj)

sbiosubplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue)

sbiosubplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue,

showLegendValue)

Arguments

simDataObj SimBiology data object.
fcnHandleValue Function handle.
xArgsValue Cell array with the names of the states.
yArgsValue Cell array with the names of the states.
showLegendValue Boolean (default is false).

Description

sbiosubplot(simDataObj) plots each simulation run for SimBiology data
object, simDataObj into its own subplot. The subplot is a time plot of each state in
simDataObj. A legend is included.

sbiosubplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue) plots
each simulation run for the SimBiology data object, simDataObj, into its own subplot.
The subplot is plotted by calling the function handle, fcnHandleValue, with input
arguments simDataObj, xArgsValue, and yArgsValue.

sbiosubplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue,

showLegendValue) plots each simulation run for the SimBiology data object,
simDataObj, into its own subplot. The subplot is plotted by calling the function handle,
fcnHandleValue, with input arguments simDataObj, xArgsValue, and yArgsValue.



 sbiosubplot

1-235

showLegendValue indicates if a legend is shown in the plot. showLegendValue can be
either true or false. By default, showLegendValue is false.

Examples

This example shows how to plot data from an ensemble run without interpolation.

% Load the radiodecay model.

        sbioloadproject('radiodecay.sbproj','m1');

 

        % Configure the model to run with the stochastic solver.

        cs = getconfigset(m1, 'active');

        set(cs, 'SolverType', 'ssa');

        set(cs.SolverOptions, 'LogDecimation', 100);

 

        % Run an ensemble simulation and view the results.

        simDataObj = sbioensemblerun(m1, 10, 'linear');

        sbiosubplot(simDataObj);

See Also
sbioplot



1 Functions — Alphabetical List

1-236

sbiotrellis

Plot data or simulation results in trellis plot

Syntax

trellisplot = sbiotrellis(data,groupCol,xCol,yCol)

trellisplot = sbiotrellis(data,groupCol,xCol,yCol,Name,Value)

trellisplot = sbiotrellis(data,fcnHandle,groupCol,xCol,yCol)

trellisplot = sbiotrellis(simData,fcnHandle,xCol,yCol)

Description

trellisplot = sbiotrellis(data,groupCol,xCol,yCol) plots each group in
data as defined by the group column variable groupCol into its own subplot. The data
defined by column xCol is plotted against the data defined by column(s) yCol.

trellisplot = sbiotrellis(data,groupCol,xCol,yCol,Name,Value) uses
additional options specified by one or more Name,Value pair arguments that are
supported by the plot command.

trellisplot = sbiotrellis(data,fcnHandle,groupCol,xCol,yCol) plots each
group in data as defined by the group column variable groupCol into its own subplot.
sbiotrellis creates the subplot by calling the function handle, fcnHandle, with input
arguments defined by the data columns xCol and yCol. The fcnHandle cannot be
empty and must be specified.

The fcnHandle must have the signature fcnHandle(x,y), where x is a numeric
column vector, and y is a matrix with the same number of rows as x.

For instance, if you want to create a trellis plot with a logarithmic y-axis, use @semilogy
as the function handle, where semilogy is the function that plots data with logarithmic
scale for the y-axis.

trellisplot = sbiotrellis(simData,fcnHandle,xCol,yCol) plots each group
in simData into its own subplot. sbiotrellis creates the subplot by calling the



 sbiotrellis

1-237

function handle, fcnHandle with input arguments defined by the columns xCol and
yCol. The fcnHandle can be empty ('' or []). If empty, the default time plot is created
using the handle @plot.

The fcnHandle must have the signature fcnHandle(simDataI,xCol,yCol), where
simDataI is a single SimData object, and xCol and yCol are the corresponding input
arguments to sbiotrellis.

Tip Use the plot method of a sbiotrellis object to overlay a SimData object or a dataset
on an existing sbiotrellis plot. For example, plot(trellisplot,...) adds a plot
to the object trellisplot. The SimData or dataset that is being plotted must have
the same number of elements or groups as the trellisplot object. The plot method
has the same input arguments as sbiotrellis.

Input Arguments

data — Data
dataset | groupedData object

Data, specified as a dataset containing grouped data or a groupedData object.

groupCol — Group column name
string

Group column name, specified as a string which is the name of a column in data that
contains grouping information or an empty string '' which implies there is only one
group in data.

xCol — Name of a column to plot on the x-axis
string

Name of a column to plot on the x-axis, specified as a string.

If data is groupedData, then xCol can also be an empty string '', and
the x-coordinates of the data are determined by the variable specified in
DATA.Properties.IndependentVariableName.

If data is dataset, then xCol cannot be empty.



1 Functions — Alphabetical List

1-238

yCol — Name of a column to plot on the y-axis
string | cell array of strings

Name of a column to plot on the y-axis, specified as a string or cell array of strings.

fcnHandle — Handle to a function
function handle

Handle to a function, specified as a function handle.

If the first argument is a dataset or groupedData object, the fcnHandle must have
the signature fcnHandle(x,y), where x is a numeric column vector, and y is a matrix
with the same number of rows as x.

If it is a SimData object, the fcnHandle must have the signature
fcnHandle(simDataI,xCol,yCol), where simDataI is a single SimData object, and
xCol and yCol are the corresponding input arguments to sbiotrellis.

simData — Simulation data
SimData object

Simulation data, specified as a SimData object.

Output Arguments

trellisplot — Plot object
sbiotrellis object

Plot object, specified as a sbiotrellis object. The object has the following properties.

• hFig – This is a MATLAB figure object. Use this object to control the appearance and
behavior of the figure. For instance, to change the figure window background color to
white, enter trellisplot.hFig.Color = 'white'. For the list of properties, see
the Figure properties.

• nPlots – This property tells you the total number of plots in the figure.
• plots – This is a vector of axes objects with length equal to nPlots.

Use this property to control the appearance and behavior of axes objects.
For example, if you want to change the y-axis to a log scale, enter
set(trellisplot.plots,'YScale','log'). For the list of properties, see the
Axes properties.



 sbiotrellis

1-239

Examples

Create a Trellis Plot for Grouped Data

This example shows how to create a trellis plot for grouped data with a logarithmic y-
axis.

Load a sample dataset.

load pheno.mat ds

Plot a trellis plot using the dataset.

plot = sbiotrellis(ds,'ID','TIME','CONC');



1 Functions — Alphabetical List

1-240

Specify the function handle @semilogy to change the y-axis to log scale.

plot2 = sbiotrellis(ds,@semilogy,'ID','TIME','CONC');

Plot Stochastic Simulation Data

This example shows how to plot stochastic simulation data from a radioactive decay
model.

Load the sample project.

sbioloadproject('radiodecay');

Set the solver to be a stochastic solver.



 sbiotrellis

1-241

cs = getconfigset(m1);

cs.SolverType = 'ssa';

Run an ensemble simulation with the number of runs set to 12.

sd = sbioensemblerun(m1,12);

Plot the data.

sbiotrellis(sd,'','Time',{'x','z'});

See Also
sbioplot | sbiosubplot



1 Functions — Alphabetical List

1-242

sbiounit
Create user-defined unit

Syntax
unitObject = sbiounit('NameValue')

unitObject = sbiounit('NameValue', 'CompositionValue')

unitObject =

sbiounit('NameValue','CompositionValue',MultiplierValue)

unitObject =

sbiounit('NameValue','CompositionValue',MultiplierValue,OffsetValue)

unitObject =

sbiounit('NameValue','CompositionValue',...'PropertyName',

PropertyValue...)

Arguments

NameValue Name of the user-defined unit. NameValue must begin
with characters and can contain characters, underscores, or
numbers. NameValue can be any valid MATLAB variable
name.

CompositionValue Shows the combination of base and derived units that
defines the unit NameValue. For example molarity is
mole/liter. Base units are the set of units used to define
all unit quantity equations. Derived units are defined using
base units or mixtures of base and derived units.

MultiplierValue Numerical value that defines the relationship between the
user-defined unit NameValue and the base unit as a product
of the MultiplierValue and the base unit. For example, 1
mole is 6.0221e23*molecule. The MultiplierValue is
6.0221e23.

OffsetValue Numerical value by which the unit composition is modified.
For example, °Celsius = (5/9)*(°Fahrenheit-32);
°Fahrenheit is Composition; MultiplierValue is 5/9
and OffsetValue is –32.



 sbiounit

1-243

PropertyName Name of the unit object property, for example,'Notes'.
PropertyValue Value of the unit object property, for example, 'New unit

for GPCR model'.

Description

unitObject = sbiounit('NameValue') constructs a SimBiology unit object
named NameValue. Valid names must begin with a letter, and be followed by letters,
underscores, or numbers.

unitObject = sbiounit('NameValue', 'CompositionValue') allows you to
specify the name and the composition of the unit.

unitObject =

sbiounit('NameValue','CompositionValue',MultiplierValue)

creates a unit with the name NameValue where the unit is defined as
MultiplierValue*CompositionValue.

unitObject =

sbiounit('NameValue','CompositionValue',MultiplierValue,OffsetValue)

creates a unit with the specified offset.

unitObject =

sbiounit('NameValue','CompositionValue',...'PropertyName',

PropertyValue...) defines optional properties. The property name/property value
pairs can be in any format supported by the function set (for example, name-value string
pairs, structures, and name-value cell array pairs).

In order to use unitObject, you must add it to the user-defined library with the
sbioaddtolibrary function. To get the unit object into the user-defined library, use the
following command:

sbioaddtolibrary(unitObject);

You can view additional unitObject properties with the get command. You can modify
additional properties with the set command. For more information about unit object
properties and methods, see Unit object.

Use the sbiowhos function to list the units available in the user-defined library.



1 Functions — Alphabetical List

1-244

Examples

This example shows you how to create a user-defined unit, add it to the user-defined
library, and query the library.

1 Create units for the rate constants of a first-order and a second-order reaction.

unitObj1 = sbiounit('firstconstant', '1/second', 1);

unitObj2 = sbiounit('secondconstant', '1/molarity*second', 1); 

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj1);

sbioaddtolibrary(unitObj2);

3 Query the user-defined library in the root object.
rootObj = sbioroot;

rootObj.UserDefinedLibrary.Units

SimBiology UserDefined Units

                                                

Index:  Name:            Composition:          Multiplier:     Offset:

1       firstconstant     1/second             1.000000        0.000000

2       secondconstant    1/molarity*second    1.000000        0.000000  

Alternatively, use the sbiowhos command.
sbiowhos -userdefined -unit

SimBiology UserDefined Units

                                                

Index:  Name:            Composition:          Multiplier:     Offset:

1       firstconstant     1/second             1.000000        0.000000

2       secondconstant    1/molarity*second    1.000000        0.000000  

See Also
sbioaddtolibrary | sbioshowunits | sbiounitprefix | sbiowhos



 sbiounitcalculator

1-245

sbiounitcalculator
Convert value between units

Syntax

result = sbiounitcalculator('fromUnits', 'toUnits', Value)

Description

result = sbiounitcalculator('fromUnits', 'toUnits', Value) converts the
value, Value, which is defined in the units, fromUnits, to the value, result, which is
defined in the units, toUnits.

Examples
result = sbiounitcalculator('mile/hour','meter/second',1)

See Also
sbioshowunits



1 Functions — Alphabetical List

1-246

sbiounitprefix
Create user-defined unit prefix

Syntax

unitprefixObject = sbiounitprefix('NameValue')

unitprefixObject = sbiounitprefix('NameValue', 'ExponentValue')

unitprefixObject = sbiounitprefix('NameValue', ...'PropertyName',

PropertyValue ...)

Arguments

NameValue Name of the user-defined unit prefix. NameValue must begin
with characters and can contain characters, underscores, or
numbers. NameValue can be any valid MATLAB variable name.

ExponentValue Shows the value of 10^Exponent that defines the relationship
of the unit Name to the base unit. For example, for the unit
picomole, Exponent is –12.

PropertyName Name of the unit prefix object property. For example, 'Notes'.
PropertyValue Value of the unit prefix object property. For example, 'New

unitprefix for GPCR model'.

Description

unitprefixObject = sbiounitprefix('NameValue') constructs a SimBiology unit
prefix object with the name NameValue. Valid names must begin with a letter, and be
followed by letters, underscores, or numbers.

unitprefixObject = sbiounitprefix('NameValue', 'ExponentValue')

creates a unit-prefix object with a multiplicative factor of 10^'ExponentValue'.

unitprefixObject = sbiounitprefix('NameValue', ...'PropertyName',

PropertyValue ...) defines optional properties. The property name/property value



 sbiounitprefix

1-247

pairs can be in any format supported by the function set (for example, name-value string
pairs, structures, and name-value cell array pairs).

In order to use unitprefixObject, you must add it to the user-defined library with the
sbioaddtolibrary function. To get the unit-prefix object into the user-defined library,
use the following command:

sbioaddtolibrary(unitprefixObject);

You can view additional unitprefixObject properties with the get command. You can
modify additional properties with the set command.

Use the sbioshowunitprefixes function to list the units available in the user-defined
library.

Examples

This example shows how to create a user-defined unit prefix, add it to the user-defined
library, and query the library.

1 Create a unit prefix.

unitprefixObj1 = sbiounitprefix('peta', 15);

2 Add the unit prefix to the user-defined library.

sbioaddtolibrary(unitprefixObj1);

3 Query the user-defined library in the root object.
rootObj = sbioroot;

rootObj.UserDefinedLibrary.UnitPrefixes

Unit Prefix Array

   Index:  Library:     Name:             Exponent:

   1       UserDefined  peta               15      

Alternatively, use the sbiowhos command.
sbiowhos -userdefined -unitprefix

SimBiology UserDefined Unit Prefixes

           

   Index:  Name:           Multiplier:              

   1       peta            1.000000e+015



1 Functions — Alphabetical List

1-248

More About
• sbioshowunits

See Also
sbioaddtolibrary | sbioshowunits | sbiounit | sbiowhos



 sbiovariant

1-249

sbiovariant
Construct variant object

Syntax

variantObj = sbiovariant('NameValue')

variantObj = sbiovariant('NameValue', 'ContentValue')

variantObj = sbiovariant(...'PropertyName', PropertyValue...)

Arguments

modelObj Specify the model object to which you want add a variant.
variantObj Variant object to create and add to the model object.
NameValue Name of the variant object. NameValue is assigned to the

Name property of the variant object.

Description

variantObj = sbiovariant('NameValue') creates a SimBiology variant object
(variantObj) with the name NameValue. The variant object Parent property is
assigned [] (empty).

variantObj = sbiovariant('NameValue', 'ContentValue') creates
a SimBiology variant object (variantObj) with the Content property set to
ContentValue.

To add a variant to a model use the copyobj method. A SimBiology variant object stores
alternate values for properties on a SimBiology model. For more information on variants,
see Variant object.

variantObj = sbiovariant(...'PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in any format
supported by the function set (for example, name-value string pairs, structures, and
name-value cell array pairs).



1 Functions — Alphabetical List

1-250

View properties for a variant object with the get command, and modify properties for a
variant object with the set command.

Note: Remember to use the addcontent method instead of using the set method on the
Content property because the set method replaces the data in the Content property,
whereas addcontent appends the data.

Method Summary

Property Summary

Examples

1 Create a variant object.

variantObj = sbiovariant('p1');

2 Add content to the variant object that varies the InitialAmount property of a
species named A.

addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also
addvariant | copyobj | getvariant



 sbiowhos

1-251

sbiowhos
Show contents of project file, library file, or SimBiology root object

Syntax

sbiowhos flag

sbiowhos ('flag')

sbiowhos flag1 flag2...

sbiowhos FileName

Description

sbiowhos shows contents of the SimBiology root object. This includes the built-in and
user-defined kinetic laws, units, and unit prefixes.

sbiowhos flag shows specific information about the SimBiology root object as defined
by flag. Valid flags are described in this table.

Flag Description

-builtin Built-in kinetic laws, units, and unit
prefixes

-data Data saved in file
-kineticlaw Built-in and user-defined kinetic laws
-unit Built-in and user-defined units
-unitprefix Built-in and user-defined unit prefixes
-userdefined User-defined kinetic laws, units, and unit

prefixes

You can also specify the functional form sbiowhos ('flag').

sbiowhos flag1 flag2... shows information about the SimBiology root object as
defined by flag1, flag2,... .

sbiowhos FileName shows the contents of the SimBiology project or library defined by
Name.



1 Functions — Alphabetical List

1-252

Examples
% Show contents of the SimBiology root object

  sbiowhos    

 

% Show kinetic laws on the SimBiology root object

  sbiowhos -kineticlaw

 

% Show the builtin units of the SimBiology root object.

  sbiowhos -builtin -unit

 

% Show all contents of project file.

  sbiowhos myprojectfile

 

% Show kinetic laws from a library file.

  sbiowhos -kineticlaw mylibraryfile

 

% Show all contents of multiple files.

  sbiowhos myfile1 myfile2

See Also
whos



 sbmlexport

1-253

sbmlexport
Export SimBiology model to SBML file

Syntax
sbmlexport(modelObj)

sbmlexport(modelObj, 'FileName')

Arguments

modelObj Model object. Enter a variable name for a model object.
FileName XML file with a Systems Biology Markup Language (SBML) format.

Enter either a file name or a path and file name supported by your
operating system. If the file name does not have the extension .xml,
then .xml is appended to end of the file name.

Description
sbmlexport(modelObj) exports a SimBiology model object (modelObj) to a file with
a Systems Biology Markup Language (SBML) Level 2 Version 4 format. The default file
extension is .xml and the file name matches the model name.

sbmlexport(modelObj, 'FileName') exports a SimBiology model object (modelObj)
to an SBML file named FileName. The default file extension is .xml.

A SimBiology model can also be written to a SimBiology project with the
sbiosaveproject function to save features not supported by SBML.

For more information about features that are supported by SimBiology but not by SBML
or vice visa, see “SBML Support”.

Examples
Export a model (modelObj) to a file (gene_regulation.xml) in the current working
directory.



1 Functions — Alphabetical List

1-254

sbmlexport(modelObj,'gene_regulation.xml');

More About
• “Exporting a SimBiology Model to SBML Format”
• “SBML Support”
• sbiomodel

• sbiosaveproject

References

Finney, A., Hucka, M., (2003), Systems Biology Markup Language (SBML) Level 2:
Structures and facilities for model definitions. Accessed from SBML.org

See Also
sbiomodel | sbiosaveproject | sbmlimport

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html


 sbmlimport

1-255

sbmlimport
Import SBML-formatted file

Syntax

modelObj = sbmlimport(File)

Description

modelObj = sbmlimport(File) imports File, a Systems Biology Markup Language
(SBML)-formatted file, into MATLAB and creates a model object modelObj.

File is a string specifying a file name or a path and file name supported by your
operating system. File extensions are .sbml or .xml.File can also be a URL, if you
have the Java® programming language.

sbmlimport supports SBML Level 2 Version 4 and earlier.

For functional characteristics and limitations, see “SBML Support”.

Input Arguments

File

String specifying either of the following:

• File name or path and file name supported by your operating system
• URL (if you have Java programming language)

Examples

Import SBML model:

sbmlobj = sbmlimport('oscillator.xml');



1 Functions — Alphabetical List

1-256

Alternatives

Use the SimBiology desktop to import an SBML-formatted file. For more information, see
“Importing and Exporting Models, Tasks, and Data from the Desktop” and “Importing
from SBML Files”.

More About
• “SBML Support”
• “Importing and Exporting Models, Tasks, and Data from the Desktop”
• “Importing from SBML Files”

References

Finney, A., Hucka, M., (2003). Systems Biology Markup Language (SBML) Level 2:
Structures and facilities for model definitions. SBML.org.

See Also
get | sbiosimulate | sbmlexport | set

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html


 simbiology

1-257

simbiology
Open SimBiology desktop for modeling and simulation

Syntax

simbiology

simbiology(modelObj)

simbiology(File)

Input Arguments

modelObj SimBiology model object or an array of model objects.
File String specifying a file name or path and file name of an sbproj file. If

you specify only a file name, that file must be on the MATLAB search
path or in the MATLAB Current Folder.

Description

simbiology opens the SimBiology desktop, which lets you:

• Build a SimBiology model by representing reaction pathways and entering kinetic
data for the reactions.

• Import or export SimBiology models to and from the MATLAB workspace or from a
Systems Biology Markup Language (SBML) file.

• Modify an existing SimBiology model.
• Simulate a SimBiology model using individual or ensemble runs.
• View results from the simulation.
• Perform analysis tasks such as sensitivity analysis, parameter and species scans, and

calculation of conserved moieties.
• Import and plot data for analysis tasks.
• Create and/or modify user-defined units and unit prefixes.
• Create and/or modify user-defined kinetic laws.



1 Functions — Alphabetical List

1-258

simbiology(modelObj) opens the SimBiology desktop with modelObj, a SimBiology
model object. If a project is open in the desktop, the simbiology function adds
modelObj to the project.

simbiology(File) opens the project specified by File in the SimBiology desktop.
File is a string specifying a file name or path and file name of an sbproj file. If you
specify only a file name, that file must be on the MATLAB search path or in the
MATLAB Current Folder. If a project is open in the desktop, the software replaces it with
the new project, after prompting you to save any changes.

The Parent property of a SimBiology model object is set to the SimBiology root object.
The root object contains a list of model objects that are accessible from the MATLAB
command line and from the SimBiology desktop. Because both the command line and the
desktop point to the same model object in the Root object, changes you make to the
model at the command line are reflected in the desktop, and vice versa.

Note: The sbioreset function removes all models from the root object. Therefore, the
sbioreset function removes all models from the SimBiology desktop.

Examples

Create a SimBiology model in the MATLAB workspace, and then open the SimBiology
desktop with the model:

modelObj = sbiomodel('cell');

simbiology(modelObj)

See Also
sbioroot | sbiofittool



 SimBiology.export.Dose class

1-259

SimBiology.export.Dose class
Superclasses: matlab.mixin.Heterogeneous

Exported SimBiology model dose object

Description

SimBiology.export.Dose is the superclass for modifiable export dose
objects. An export dose is either of subclass SimBiology.export.RepeatDose or
SimBiology.export.ScheduleDose.

Construction

Export dose objects are created by the export method for SimBiology models. By default,
all active doses are export doses, but you can specify which doses to export using the
optional editdoses input argument to export.

Properties

Amount

Amount of dose, a nonnegative scalar value.

AmountUnits

Dose amount units. This property is read only.

DurationParameterName

Parameter specifying length of time to administer a dose. This property is read only.

LagParameterName

Parameter specifying time lag for the dose. This property is read only.

Name

Name of dose object. This property is read only.



1 Functions — Alphabetical List

1-260

Notes

Text describing dose object. This property is read only.

Parent

Name of the parent export model. This property is read only.

Rate

Rate of dose, a nonnegative scalar value.

RateUnits

Units for dose rate. This property is read only.

TargetName

Species receiving dose. This property is read only.

TimeUnits

Time units for dosing. This property is read only.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Exported SimBiology Model Dose Objects

Open a sample SimBiology model project, and export the included model object.

sbioloadproject('AntibacterialPKPD')

em = export(m1);

Get the editable doses from the exported model object.

doses = getdose(em)



 SimBiology.export.Dose class

1-261

doses = 

  1x4 RepeatDose array with properties:

    Interval

    RepeatCount

    StartTime

    TimeUnits

    Amount

    AmountUnits

    DurationParameterName

    LagParameterName

    Name

    Notes

    Parent

    Rate

    RateUnits

    TargetName

The exported model has 4 repeated dose objects.

Display the 3rd dose object from the exported model object.

doses(3)

ans = 

  RepeatDose with properties:

                 Interval: 12

              RepeatCount: 27

                StartTime: 0

                TimeUnits: 'hour'

                   Amount: 500

              AmountUnits: 'milligram'

    DurationParameterName: 'TDose'

         LagParameterName: ''

                     Name: '500 mg bid'

                    Notes: ''

                   Parent: 'Antibacterial'

                     Rate: 0

                RateUnits: ''

               TargetName: 'Central.Drug'

Change the dosing amount for this dose object.



1 Functions — Alphabetical List

1-262

doses(3).Amount = 600;

doses(3)

ans = 

  RepeatDose with properties:

                 Interval: 12

              RepeatCount: 27

                StartTime: 0

                TimeUnits: 'hour'

                   Amount: 600

              AmountUnits: 'milligram'

    DurationParameterName: 'TDose'

         LagParameterName: ''

                     Name: '500 mg bid'

                    Notes: ''

                   Parent: 'Antibacterial'

                     Rate: 0

                RateUnits: ''

               TargetName: 'Central.Drug'

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
export | SimBiology.export.RepeatDose | SimBiology.export.ScheduleDose



 SimBiology.export.ExplicitTauSimulationOptions class

1-263

SimBiology.export.ExplicitTauSimulationOptions class
Superclasses: SimBiology.export.StochasticSimulationOptions

Settings for explicit tau-leaping solver of exported SimBiology model

Description

SimBiology.export.ExplicitTauSimulationOptions is the class of simulation
options associated with the explicit tau-leaping solver of an export model.

Construction

Explicit tau simulation options are created by the export method for SimBiology models
with a stochastic SolverType set to 'expltau'.

Properties

ErrorTolerance

Error tolerance, a scalar value in the range (0,1).

LogDecimation

Frequency to log stochastic simulation output, a positive integer value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

RandomState

Random number generator, a positive integer value.



1 Functions — Alphabetical List

1-264

SolverType

String indicating solver type to use for simulation, 'expltau'. This property is read
only.

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.ImplicitTauSimulationOptions |
SimBiology.export.ODESimulationOptions | SimBiology.export.SimulationOptions |
SimBiology.export.StochasticSimulationOptions



 SimBiology.export.ImplicitTauSimulationOptions class

1-265

SimBiology.export.ImplicitTauSimulationOptions class
Superclasses: SimBiology.export.StochasticSimulationOptions

Settings for implicit tau-leaping stochastic simulation of exported SimBiology model

Description

SimBiology.export.ImplicitTauSimulationOptions is the class of simulation
options associated with the implicit tau-leaping solver of an export model.

Construction

Implicit tau-leaping simulation options are created by the export method for SimBiology
models with a stochastic SolverType set to 'impltau'.

Properties

ErrorTolerance

Error tolerance, a scalar value in the range (0,1).

LogDecimation

Frequency to log stochastic simulation output, a positive integer value.

MaxIterations

Nonlinear solver maximum number of iterations, a positive integer value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.



1 Functions — Alphabetical List

1-266

RandomState

Random number generator, a positive integer value.

SolverType

String indicating solver type to use for simulation, 'impltau'. This property is read
only.

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.ExplicitTauSimulationOptions |
SimBiology.export.ODESimulationOptions | SimBiology.export.SimulationOptions |
SimBiology.export.StochasticSimulationOptions



 SimBiology.export.Model class

1-267

SimBiology.export.Model class

Exported SimBiology model object

Description

Exported SimBiology models are limited-access models that can be simulated and
accelerated. You can speedup simulation of exported models using Parallel Computing
Toolbox, and deploy exported models using MATLAB Compiler™.

By default, all active dose objects, species, parameters, and compartments export with
a SimBiology model, and are editable in the exported model object. You can limit which
doses, species, parameters, and compartments are editable using additional options
during export. Reactions, rules, and events are never editable in an exported model.

Construction

Use the export method to export a SimBiology model.

Properties

DependentFiles

Function files the model depends on. This property is read only.

ExportNotes

Text with additional information associated with the exported model. This property is
read only.

ExportTime

Creation time of the exported model. This property is read only.

InitialValues

Vector of initial values for modifiable species, compartments, and parameters.



1 Functions — Alphabetical List

1-268

Name

Name of the exported model. This property is read only.

Notes

HTML text describing the exported model object. This property is read only.

SimulationOptions

SimBiology.export.SimulationOptions object specifying simulation options.

ValueInfo

Array of SimBiology.export.ValueInfo objects of modifiable species, parameters, and
compartments.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Export SimBiology Model Object

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');

em = export(modelObj)

em = 

  Model with properties:

           Name: 'lotka'

     ExportTime: '12-Dec-2012 15:20:13'



 SimBiology.export.Model class

1-269

    ExportNotes: ''

Display the editable values (compartments, species, and parameters) information.

em.ValueInfo

ans = 

  8x1 ValueInfo array with properties:

    Constant

    InitialValue

    Name

    Parent

    QualifiedName

    Tag

    Type

    Units

There are 8 editable values. Display the names of the editable values.

{em.ValueInfo.Name}

ans = 

    'unnamed'    'x'    'y1'    'y2'    'z'    'c1'    'c2'    'c3'

Display the exported model simulation options.

em.SimulationOptions

ans = 

  ODESimulationOptions with properties:

            AbsoluteTolerance: 1.0000e-06

     AbsoluteToleranceScaling: 1

    AbsoluteToleranceStepSize: []

                      MaxStep: []

                  OutputTimes: []

            RelativeTolerance: 1.0000e-03

                   SolverType: 'ode15s'

          MaximumNumberOfLogs: Inf

             MaximumWallClock: Inf

                     StopTime: 10



1 Functions — Alphabetical List

1-270

                    TimeUnits: 'second'

The exported model has a deterministic solver.

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
export | SimBiology.export.Dose | SimBiology.export.SimulationOptions |
SimBiology.export.ValueInfo

More About
• Class Attributes
• Property Attributes



 SimBiology.export.ODESimulationOptions class

1-271

SimBiology.export.ODESimulationOptions class
Superclasses: SimBiology.export.SimulationOptions

Settings for deterministic, ordinary differential equation simulation of exported
SimBiology model

Description

SimBiology.export.ODESimulationOptions is the class of simulation options
associated with determinist, ordinary differential equation (ODE) solvers.

Construction

Deterministic simulation options are created by the export method for SimBiology
models with a deterministic SolverType (for example, sundials or ode15s).

Properties

AbsoluteTolerance

Absolute error tolerance applied to state value during simulation, a positive scalar value.

AbsoluteToleranceScaling

Control scaling of absolute error tolerance, a logical value.

AbsoluteToleranceStepSize

Initial guess for time step size for scaling of absolute error tolerance, [] or a scalar value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.



1 Functions — Alphabetical List

1-272

MaxStep

Upper bound on ODE solver step size, [] or a positive scalar value.

OutputTimes

Times to log in simulation output, a vector of sorted nonnegative values.

RelativeTolerance

Allowable error tolerance relative to state value during simulation, a scalar value in the
range (0,1).

SolverType

String indicating solver type to use for simulation. Possible deterministic solver types
are:

• 'sundials'

• 'ode15s'

• 'ode23t'

• 'ode45'

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.SimulationOptions |
SimBiology.export.StochasticSimulationOptions



 SimBiology.export.RepeatDose class

1-273

SimBiology.export.RepeatDose class
Superclasses: SimBiology.export.Dose

Repeated doses for exported SimBiology model

Description

SimBiology.export.RepeatDose is the class for export repeat doses.

Construction

Export repeat dose objects are created by the export method for SimBiology models. By
default, all active repeat doses are export repeat doses, but you can specify which repeat
doses to export using the optional editdoses input argument to export.

Properties

Amount

Amount of dose, a nonnegative scalar value.

AmountUnits

Dose amount units. This property is read only.

DurationParameterName

Parameter specifying length of time to administer a dose. This property is read only.

Interval

Time between doses, a nonnegative scalar value.

LagParameterName

Parameter specifying time lag for the dose. This property is read only.



1 Functions — Alphabetical List

1-274

Name

Name of dose object. This property is read only.

Notes

Text describing dose object. This property is read only.

Parent

Name of the parent export model. This property is read only.

Rate

Rate of dose, a nonnegative scalar value.

RateUnits

Units for dose rate. This property is read only.

RepeatCount

Dose repetitions, a nonnegative integer value.

StartTime

Start time for initial dose, a nonnegative scalar value.

TargetName

Species receiving dose. This property is read only.

TimeUnits

Time units for dosing. This property is read only.

Note: You cannot change the Rate property of RepeatDose for exported SimBiology
model if all of the following conditions are true:

• The UnitConversion property of the model is already set to true.
• The Rate property is empty or set to zero.
• The RateUnits is set to empty.



 SimBiology.export.RepeatDose class

1-275

To change the Rate, do one of the following:

• Set the UnitConversion property of the original model to false. Then export the
model again.

• Set the RateUnits appropriately.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.Dose | SimBiology.export.ScheduleDose



1 Functions — Alphabetical List

1-276

SimBiology.export.ScheduleDose class
Superclasses: SimBiology.export.Dose

Schedule dose for exported SimBiology model

Description

SimBiology.export.ScheduleDose is the class for export schedule doses.

Construction

Export schedule dose objects are created by the export method for SimBiology models.
By default, all active schedule doses are export schedule doses, but you can specify which
schedule doses to export using the optional editdoses input argument to export.

Properties

Amount

Amount of dose, a nonnegative scalar value.

AmountUnits

Dose amount units. This property is read only.

DurationParameterName

Parameter specifying length of time to administer a dose. This property is read only.

LagParameterName

Parameter specifying time lag for the dose. This property is read only.

Name

Name of dose object. This property is read only.



 SimBiology.export.ScheduleDose class

1-277

Notes

Text describing dose object. This property is read only.

Parent

Name of the parent export model. This property is read only.

Rate

Rate of dose, a nonnegative scalar value.

RateUnits

Units for dose rate. This property is read only.

TargetName

Species receiving dose. This property is read only.

Time

Schedule dose times, a vector of nonnegative values.

TimeUnits

Time units for dosing. This property is read only.

Note: You cannot change the Rate property of ScheduleDose for exported SimBiology
model if all of the following conditions are true:

• The UnitConversion property of the model is already set to true.

• The Rate property is empty or set to zero.
• The RateUnits is set to empty.
To change the Rate, do one of the following:

• Set the UnitConversion property of the original model to false. Then export the
model again.

• Set the RateUnits appropriately.



1 Functions — Alphabetical List

1-278

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.Dose | SimBiology.export.RepeatDose



 SimBiology.export.SimulationOptions class

1-279

SimBiology.export.SimulationOptions class

Simulation settings for exported SimBiology model

Description
SimBiology.export.SimulationOptions is the superclass of simulation
options for exported models. Simulation options are either of subclass
SimBiology.export.ODESimulationOptions for deterministic solvers, or
SimBiology.export.StochasticSimulationOptions for stochastic solvers.

Construction
Simulation options are created by the export method for SimBiology models.

Properties
MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.



1 Functions — Alphabetical List

1-280

See Also
export | SimBiology.export.ODESimulationOptions |
SimBiology.export.StochasticSimulationOptions



 SimBiology.export.StochasticSimulationOptions class

1-281

SimBiology.export.StochasticSimulationOptions class
Superclasses: SimBiology.export.SimulationOptions

Settings for stochastic simulation of exported SimBiology model

Description

SimBiology.export.StochasticSimulationOptions is the
superclass of simulation options associated with stochastic solvers. The
subclasses of SimBiology.export.StochasticSimulationOptions
are SimBiology.export.ExplicitTauSimulationOptions and
SimBiology.export.ImplicitTauSimulationOptions.

Construction

Stochastic simulation options are created by the export method for SimBiology models
with a stochastic SolverType (ssa, expltau, or impltau).

Properties

LogDecimation

Frequency to log stochastic simulation output, a positive integer value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

RandomState

Random number generator, a positive integer value.



1 Functions — Alphabetical List

1-282

SolverType

String indicating solver type to use for simulation. This property is read only. The
stochastic solver type is one of:

• 'ssa'

• 'expltau'

• 'impltau'

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.ExplicitTauSimulationOptions
| SimBiology.export.ImplicitTauSimulationOptions |
SimBiology.export.ODESimulationOptions | SimBiology.export.SimulationOptions



 SimBiology.export.ValueInfo class

1-283

SimBiology.export.ValueInfo class

Modifiable species, compartments, or parameters in exported SimBiology model

Description

SimBiology.export.ValueInfo is the class that describes the modifiable value
components in a SimBiology.export.Model, including species, parameters, and
compartments.

Construction

ValueInfo objects are created by the export method for SimBiology models. By default,
all model species, parameters, and compartments are ValueInfo objects, but you can
specify which value components to export using the optional editvals input argument
to export.

Properties

Constant

Display whether value is constant or time-varying. This property is read only.

InitialValue

Initial value for the component, a scalar value.

Name

Name of species, compartment, or parameter. This property is read only.

Parent

Name of parent model, compartment, or reaction. This property is read only.

QualifiedName

Qualified name of species, compartment, or parameter. This property is read only.



1 Functions — Alphabetical List

1-284

• For compartments and model-scoped parameters, the qualified name is the same as
the name.

• For species, the qualified name is CompartmentName.SpeciesName.
• For reaction-scoped parameters, the qualified name is

ReactionName.ParameterName.

Tag

Label for species, compartment, or parameter. This property is read only.

Type

Type of value (species, parameter, or compartment). This property is read only.

Units

Value units. This property is read only

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
export | SimBiology.export.Model



2

Methods — Alphabetical List

The object that the methods apply to are listed in parenthesis after the method name.



2 Methods — Alphabetical List

2-2

accelerate(SimFunction)
Prepare SimFunction object for accelerated simulations

Syntax

accelerate(F)

Input Arguments

F SimFunction object created by the
createSimFunction method of a SimBiology model.

Description

accelerate(F) prepares SimFunction object F for accelerated simulations.

Note: F is automatically accelerated at the first function execution. However, manually
accelerate the object if you want it accelerated in your deployment applications.

Examples

Simulate SimFunction Object

This example uses the the Lotka-Volterra (predator-prey) model described by Gillespie
[1].

Load the sample project containing the lotka model.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and y1
and y2 as the output of the function with no dose.



 accelerate(SimFunction)

2-3

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f = 

SimFunction

Parameters:

         Name         Value       Type    

    ______________    _____    ___________

    'Reaction1.c1'      10     'parameter'

    'Reaction2.c2'    0.01     'parameter'

Observables: 

    Name      Type   

    ____    _________

    'y1'    'species'

    'y2'    'species'

Dosed: None

The SimFunction object f is not set for acceleration at the time of creation. But it will
be automatically accelerated when executed.

f.isAccelerated

ans =

     0

Define an input matrix that contains parameter values for c1 and c2.

phi = [10 0.01];

Run simulations until the stop time is 5 and plot the simulation results.

sbioplot(f(phi,5))



2 Methods — Alphabetical List

2-4

Confirm the SimFunction object f was accelerated during execution.

f.isAccelerated

ans =

     1

See Also

createSimFunction, SimFunction object



 accelerate(SimFunction)

2-5

References

[1] Gillespie D.T. "Exact Stochatic Simulation of Coupled Chemical Reactions," (1977)
The Journal of Physical Chemistry, 81(25), 2340-2361.



2 Methods — Alphabetical List

2-6

accelerate
Class: SimBiology.export.Model

Prepare exported SimBiology model for acceleration

Syntax

accelerate(model)

Description

accelerate(model) prepares the exported model for acceleration on the current type of
computer.

Note: Microsoft Visual Studio 2010 run-time libraries must be available on any computer
running accelerated models generated using Microsoft Windows SDK. If you plan to
redistribute your accelerated models to other MATLAB users, be sure they have the run-
time libraries.

Input Arguments

model

SimBiology.export.Model object.

Examples

Accelerate Exported SimBiology Model

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');

em = export(modelObj)



 accelerate

2-7

em = 

  Model with properties:

           Name: 'lotka'

     ExportTime: '12-Dec-2012 15:20:13'

    ExportNotes: ''

Accelerate the exported model.

accelerate(em);

em.isAccelerated

ans =

     1

The logical value 1 indicates that the exported model is accelerated.

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
export | SimBiology.export.Model | SimBiology.export.Model.isAccelerated



2 Methods — Alphabetical List

2-8

AbstractKineticLaw object
Kinetic law information in library

Description

The abstract kinetic law object represents a kinetic law definition, which provides a
mechanism for applying a rate law to multiple reactions. The information in this object
acts as a mapping template for the reaction rate. The kinetic law definition specifies a
mathematical relationship that defines the rate at which reactant species are produced
and product species are consumed in the reaction. The expression is shown in the
Expression property. The species variables are defined in the SpeciesVariables
property, and the parameter variables are defined in the ParameterVariables
property of the abstract kinetic law object. For an explanation of how the kinetic law
definition relates to the kinetic law object, see KineticLaw object.

Create your own kinetic law definition and add it to the kinetic law library with the
sbioaddtolibrary function. You can then use the kinetic law to define a reaction
rate. To retrieve a kinetic law definition from the user-defined library, first create a root
object using sbioroot, then use the command get(rootObj.UserDefinedLibrary,
'KineticLaws').

See “Property Summary” on page 2-9 for links to abstract kinetic law object property
reference pages.

Properties define the characteristics of an object. For example, an abstract kinetic law
object includes properties for the expression, the name of the law, parameter variables,
and species variables. Use the get and set commands to list object properties and
change their values at the command line. You can graphically change object properties in
the SimBiology desktop.

Constructor Summary

Method Summary

delete (any object) Delete SimBiology object



 AbstractKineticLaw object

2-9

display (any object) Display summary of SimBiology object
get (any object) Get object properties
set (any object) Set object properties

Property Summary

See Also

Configset object, KineticLaw object, Model object, Parameter object,
Reaction object, Root object, Rule object, Species object



2 Methods — Alphabetical List

2-10

addcompartment (model, compartment)
Create compartment object

Syntax

compartmentObj = addcompartment(modelObj, 'NameValue')

compartmentObj = addcompartment(owningCompObj, 'NameValue')

compartmentObj = addcompartment(modelObj, 'NameValue',

CapacityValue)

compartmentObj = addcompartment(...'PropertyName', PropertyValue...)

Arguments

modelObj Model object.
owningCompObj Compartment object that contains the newly created

compartment object.
NameValue Name for a compartment object. Enter a character string

unique to the model object.

For information on naming compartments, see Name.
CapacityValue Capacity value for the compartment object. Enter double.

Positive real number, default = 1.
PropertyName Enter the name of a valid property. Valid property names

are listed in “Property Summary” on page 2-12.
PropertyValue Enter the value for the property specified in

PropertyName. Valid property values are listed on each
property reference page.

Description

compartmentObj = addcompartment(modelObj, 'NameValue') creates a
compartment object and returns the compartment object (compartmentObj). In the



 addcompartment (model, compartment)

2-11

compartment object, this method assigns a value (NameValue) to the property Name, and
assigns the model object (modelObj) to the property Parent. In the model object, this
method assigns the compartment object to the property Compartments.

compartmentObj = addcompartment(owningCompObj, 'NameValue') in addition
to the above, adds the newly created compartment within a compartment object
(owningCompObj), and assigns this compartment object (owningCompObj) to the Owner
property of the newly created compartment object (compartmentObj). The parent model
is the model that contains the owning compartment (owningCompObj).

compartmentObj = addcompartment(modelObj, 'NameValue',

CapacityValue), in addition to the above, this method assigns capacity
(CapacityValue) for the compartment.

If you define a reaction within a model object (modelObj) that does not contain any
compartments, the process of adding a reaction generates a default compartment
object and assigns the reaction species to the compartment. If there is more than one
compartment, you must specify which compartment the species should be assigned to
using the format CompartmentName.SpeciesName.

compartmentObj = addcompartment(...'PropertyName', PropertyValue...)

defines optional properties. “Property Summary” on page 2-12 lists the properties.
The Owner property is one exception; you cannot set the Owner property in the
addcompartment syntax because, addcompartment requires the owning model or
compartment to be specified as the first argument and uses this information to set the
Owner property.

Method Summary

Methods for compartment objects

addcompartment (model, compartment)  
Create compartment object

addspecies (model, compartment)  
Create species object and add to
compartment object within model object

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object



2 Methods — Alphabetical List

2-12

display (any object) Display summary of SimBiology object
get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

reorder (model, compartment, kinetic law)  
Reorder component lists

set (any object) Set object properties

Property Summary

Properties for compartment objects

Add Compartments

This example shows how to add compartments to a SimBiology model.

Create a SimBiology model which is named m1.

model = sbiomodel('m1');

Add two compartments to the model, which are named as Central and Peripheral
respectively.

comp1 = addcompartment(model,'Central');

comp2 = addcompartment(model,'Peripheral');

Change the compartment capacities and units.

comp1.Capacity = 2;

comp1.CapacityUnits = 'liter';

comp2.Capacity = 1;

comp2.CapacityUnits = 'liter';

Display all the compartments of the model.

model.Compartments

   SimBiology Compartment Array



 addcompartment (model, compartment)

2-13

   Index:    Name:         Capacity:    CapacityUnits:

   1         Central       2            liter

   2         Peripheral    1            liter

See Also

addproduct, addreactant, addreaction, addspecies



2 Methods — Alphabetical List

2-14

addCompartment (PKModelDesign)
Add compartment to PKModelDesign object

Syntax

PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName)

PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName,

Name, Value)

Description

PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName)

constructs a PK compartment with the specified name and adds it to
PKModelDesignObj, a PKModelDesign object.

PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName,

Name, Value) constructs a PK compartment with the specified name, and with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

PKModelDesignObj PKModelDesign object to which you want to add a
compartment

CompObjName Name of the PKCompartment object that is constructed

Name-Value Pair Arguments

Optional comma-separated pairs of Name, Value arguments, where Name is the
argument name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

DosingType String specifying the mechanism for drug absorption.
Choices are:



 addCompartment (PKModelDesign)

2-15

• 'Bolus'

• 'Infusion'

• 'ZeroOrder'

• 'FirstOrder'

• '' (default)

For more information, see “Dosing Types”.
EliminationType String specifying the mechanism for drug elimination.

Choices are:

• 'Linear'

• 'Linear-Clearance'

• 'Enzymatic'

• '' (default)

For more information, see “Elimination Types”.
HasResponseVariable Logical indicating if the drug concentration in this

compartment is reported. Multiple compartments in
a model can have this property set to true. Default is
false.

Note: If you perform a parameter fit on a model, at
least one compartment in the model must have a
HasResponseVariable property set to true.

HasLag Logical indicating if any dose targeting this compartment
have a lag associated with them. Default is false.

These optional name-value pair arguments set the corresponding property of
the PKCompartment object. You can also set these properties after creating the
PKCompartment object by using the following syntax:

PKCompartmentObj.PropertyName = Value

For example:

PKCompartmentObj.DosingType = 'Bolus'



2 Methods — Alphabetical List

2-16

Output Arguments

PKCompartmentObj PKCompartment object

Method Summary

get (any object) Get object properties
set (any object) Set object properties

Property Summary

See Also

“Create a Pharmacokinetic Model Using the Command Line”, HasLag,
HasResponseVariable, PKCompartment object, PKModelDesign object



 addconfigset (model)

2-17

addconfigset (model)
Create configuration set object and add to model object

Syntax

configsetObj = addconfigset(modelObj, 'NameValue')

configsetObj = addconfigset(..., 'PropertyName', PropertyValue, ...)

Arguments

modelObj Model object. Enter a variable name.
NameValue Descriptive name for a configuration set object. Reserved words

'active' and 'default' are not allowed.
configsetObj Configuration set object.

Description

configsetObj = addconfigset(modelObj, 'NameValue') creates a configuration
set object and returns to configsetObj.

In the configuration set object, this method assigns a value (NameValue) to the property
Name.

configsetObj = addconfigset(..., 'PropertyName', PropertyValue, ...)

constructs a configuration set object, configsetObj, and configures configsetObj
with property value pairs. The configsetObj properties are listed in “Property
Summary” on page 2-18.

A configuration set stores simulation specific information. A model object can contain
multiple configuration sets, with one being active at any given time. The active
configuration set contains the settings that are used during a simulation. configsetObj
is not automatically set to active. Use the function setactiveconfigset to define the
active configset for modelObj.



2 Methods — Alphabetical List

2-18

Use the method copyobj to copy a configset object and add it to the modelObj.

Method Summary

Methods for configuration set objects

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
set (any object) Set object properties

Property Summary

Properties for configuration set objects

Add a Configuration Set Object

This example shows how to add a configset object to a SimBiology model and set it up for
simulation.

Load the sample radiodecay model m1, and add a Configset object to the model.

sbioloadproject radiodecay;

configsetObj = addconfigset(m1, 'myset');

Configure the simulation stop criteria by setting the StopTime property.

configsetObj.StopTime = 15;

Set the configset object to be active so that its settings are used during simulation.

setactiveconfigset(m1,configsetObj);

Simulate the model and plot results.

simdata = sbiosimulate(m1);

sbioplot(simdata);



 addconfigset (model)

2-19

See Also

getconfigset, removeconfigset, setactiveconfigset



2 Methods — Alphabetical List

2-20

addcontent (variant)

Append content to variant object

Syntax

addcontent(variantObj, contents)

addcontent(variantObj1, variantObj2)

Arguments

variantObj Specify the variant object to which you want to append data.
The Content property is modified to add the new data.

contents Specify the data you want to add to a variant object.
Contents can either be a cell array or an array of cell
arrays. A valid cell array should have the form {'Type',
'Name', 'PropertyName', PropertyValue}, where
PropertyValue is the new value to be applied for the
PropertyName. Valid Type, Name, and PropertyName
values are as follows.

'Type' 'Name' 'PropertyName'

'species' Name of the species. If there are
multiple species in the model with
the same name, specify the species as
[compartmentName.speciesName],
where compartmentName is the name of
the compartment containing the species.

'InitialAmount'

'parameter' If the parameter scope is a model,
specify the parameter name. If the
parameter scope is a kinetic law, specify
[reactionName.parameterName].

'Value'

'compartment' Name of the compartment. 'Capacity'



 addcontent (variant)

2-21

Description

addcontent(variantObj, contents) adds the data stored in the variable contents
to the variant object (variantObj).

addcontent(variantObj1, variantObj2) appends the data in the Content
property of the variant object variantObj2 to the Content property of variant object
variantObj1.

Note: Remember to use the addcontent method instead of using the set method on the
Content property because the set method replaces the data in the Content property,
whereas addcontent appends the data.

Examples

1 Create a model containing one species.

modelObj = sbiomodel('mymodel');

compObj = addcompartment(modelObj, 'comp1');

speciesObj = addspecies(compObj, 'A');

2 Add a variant object that varies the InitialAmount property of a species named A.

variantObj = addvariant(modelObj, 'v1');

addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also

addvariant, rmcontent, sbiovariant



2 Methods — Alphabetical List

2-22

adddose (model)

Add dose object to model

Syntax

doseObj2 = adddose(modelObj, 'DoseName')

doseObj2 = adddose(modelObj, 'DoseName', 'DoseType')

doseObj2 = adddose(modelObj, doseObj)

Arguments

modelObj Model object to which you add a dose object.
DoseName Name of a dose object to construct and add to a model object.

DoseName is the value of the dose object property Name.
DoseType Type of dose object to construct and add to a model object.

Enter either 'schedule' or 'repeat'.
doseObj Dose object to add to a model object. Created with the

constructor sbiodose.

Outputs

doseObj2 ScheduleDose object or RepeatDose object. A
RepeatDose or ScheduleDose object defines an increase
(dose) to a species amount during a simulation.

Description

Before using a dose object in a simulation, use the adddose method to add the dose
object to a SimBiology model object. Then, set the Active dose object property to true.



 adddose (model)

2-23

doseObj2 = adddose(modelObj, 'DoseName') constructs a SimBiology RepeatDose
object (doseObj2), assigns DoseName to the property Name, adds the dose object to a
SimBiology model object (modelObj), and assigns modelObj to the property Parent.

doseObj2 = adddose(modelObj, 'DoseName', 'DoseType') constructs either a
SimBiology ScheduleDose object or RepeatDose object (doseObj).

doseObj2 = adddose(modelObj, doseObj) adds a SimBiology dose object
(doseObj) to a SimBiology model object (modelObj), copies the dose object to a second
dose object (doseObj2), and assigns modelObj to the property Parent.

Note: Alternatively, you can create a dose object using sbiodose as a standalone dose
object, which you can apply to different models. For details, see “Creating Dose Objects”.

Examples

Add an Infusion Dose

This example shows how to add a constant-rate infusion dose to a one-compartment
model.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-
order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the
monoexponential decline , where  is the drug concentration at time t, 
is the initial concentration, and ke is the elimination rate constant. This example shows
how to set up such a one-compartment model and add an infusion dose at a constant rate
of 10 mg/hour for the total dose amount of 250 mg.

Create a One-compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.



2 Methods — Alphabetical List

2-24

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and added to the compartment. The null
species is a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set up an Infusion Dose

Add a dose object to the model using the adddose method. Specify the amount of the
dose (Amount), the dose target (TargetName), and the infusion rate (Rate). You also
need to set the Active property of the dose object to true so that the dose is applied to
the model during simulation.

d1 = adddose(m1,'InfusionDose');

d1.Amount = 250;

d1.TargetName = 'drug';

d1.Rate = 10;

d1.RateUnits = 'milligram/hour';

d1.Active = true;

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time course.

cs = getconfigset(m1);

cs.StopTime = 48;

cs.TimeUnits = 'hour';

sd = sbiosimulate(m1);

Plot results

Plot the concentration versus the time profile of the drug in the system.



 adddose (model)

2-25

sbioplot(sd);

More About
• “Doses”

See Also
getdose | removedose | RepeatDose object | sbiodose | ScheduleDose object



2 Methods — Alphabetical List

2-26

addevent (model)
Add event object to model object

Syntax

eventObj = addevent(modelObj, 'TriggerValue', 'EventFcnsValue')

eventObj = addevent(...'PropertyName', PropertyValue...)

Arguments

modelObj Model object.
TriggerValue Required property to specify a trigger condition. Must be a

MATLAB expression that evaluates to a logical value. Use
the keyword 'time' to specify that an event occurs at a
specific time during the simulation. For more information,
see Trigger.

EventFcnsValue A string or a cell array of strings, each of which specifies an
assignment of the form 'objectname = expression',
where objectname is the name of a valid object. Defines
what occurs when the event is triggered. For more
information, see EventFcns.

PropertyName Property name for an event object from “Property Summary”
on page 2-27.

PropertyValue Property value. For more information on property values,
see the property reference for each property listed in
“Property Summary” on page 2-27.

Description

eventObj = addevent(modelObj, 'TriggerValue', 'EventFcnsValue')

creates an Event object (eventObj) and adds the event to the model (modelObj).
In the event object, this method assigns a value (TriggerValue) to the property
TriggerCondition, assigns a value (EventFcnsValue) to the property EventFcns,



 addevent (model)

2-27

and assigns the model object (modelObj) to the property Parent. In the model object,
this method appends the event object to the property Events.

When the trigger expression in the property Trigger changes from false to true, the
assignments in EventFcns are executed during simulation.

For details on how events are handled during a simulation, see “Event Object”.

eventObj = addevent(...'PropertyName', PropertyValue...) defines optional
properties. The property name and property value pairs can be any format supported by
the function set (for example, name-value string pairs, structures, and name-value cell
array pairs).

Property Summary

Examples

Add an Event

This example shows how to add an event to a SimBiology model.

Create a simple model with a mass action reaction A -> B, where A and B are species.
Also add the reaction rate parameter, p1, with the parameter value of 0.5.

model       = sbiomodel('example');

r1          = addreaction(model,'A -> B');

kl          = addkineticlaw(r1,'MassAction');

p1          = addparameter(model,'p1',0.5);

kl.ParameterVariableNames = 'p1';

Increase the amount of species A to 100 at time = 2. You can do this by adding an event
object to the model. You must specify the event trigger (time >= 2), and also the event
function, which defines what happens when the event is triggered. In this example, the
event function is A = 100.

e1 = addevent(model,'time>=2','A = 100');

Simulate the model, and plot the result.

sd = sbiosimulate(model);



2 Methods — Alphabetical List

2-28

sbioplot(sd);

• “Deterministic Simulation of a Model Containing a Discontinuity”

More About
• “Event Object”



 addkineticlaw (reaction)

2-29

addkineticlaw (reaction)

Create kinetic law object and add to reaction object

Syntax

kineticlawObj = addkineticlaw(reactionObj, 'KineticLawNameValue')

kineticlawObj= addkineticlaw(..., 'PropertyName',

PropertyValue, ...)

Arguments

reactionObj Reaction object. Enter a variable name for a reaction
object.

KineticLawNameValue Property to select the type of kinetic law object to create.
For built-in kinetic law, valid values are:

'Unknown', 'MassAction', 'Henri-Michaelis-
Menten', 'Henri-Michaelis-Menten-Reversible',
'Hill-Kinetics', 'Iso-Uni-Uni', 'Ordered-
Bi-Bi', 'Ping-Pong-Bi-Bi', 'Competitive-
Inhibition', 'NonCompetitive-Inhibition', and
'UnCompetitive-Inhibition'.

Find valid KineticLawNameValue by using
sbioroot to create a SimBiology root object,
then query the object with the commands
rootObj.BuiltinLibrary.KineticLaws and
rootObj.UserDefinedLibrary.KineticLaws.

sbiowhos -kineticlaw lists kinetic laws in the
SimBiology root, which includes kinetic laws from both the
BuiltInLibrary and the UserDefinedLibrary.



2 Methods — Alphabetical List

2-30

Description

kineticlawObj = addkineticlaw(reactionObj, 'KineticLawNameValue')

creates and adds a KineticLaw object to the reactionObj.

In the kinetic law object, this method assigns a name (KineticLawNameValue) to the
property KineticLawName and assigns the reaction object to the property Parent.
In the reaction object, this method assigns the kinetic law object to the property
KineticLaw.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'a -> b');

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1);

set(kineticlawObj, ParameterVariableName, 'K1_forward');

KineticLawNameValue is any valid kinetic law definition. See “Kinetic Law Definition”
on page 3-76 for a definition of kinetic laws and more information about how they are
used to get the reaction rate expression.

kineticlawObj= addkineticlaw(..., 'PropertyName',

PropertyValue, ...) constructs a kinetic law object, kineticlawObj, and configures
kineticlawObj with property value pairs. The property name/property value pairs can



 addkineticlaw (reaction)

2-31

be in any format supported by the function set (for example, name-value string pairs,
structures, and name-value cell array pairs). The kineticlawObj properties are listed
in “Property Summary” on page 2-31.

Note: To define a Hill kinetic rate equation with a non-integer exponent that is
compatible with DimensionalAnalysis, see “Define a Custom Hill Kinetic Law that
Works with Dimensional Analysis” on page 3-160.

Property Summary

Properties for kinetic law objects

Examples

Convert Substrate into Product Using Henri-Michaelis-Menten Kinetics

This example shows how to simulate the conversion of a substrate into a product using
the Henri-Michaelis-Menten enzyme kinetics.

Create a model named mymodel.

model = sbiomodel('mymodel');

Add a reaction that represents the conversion of a substrate to a product.

reaction = addreaction(model,'Substrate -> Product');

Add the built-in Henri-Michaelis-Menten kinetic law to the reaction.

kineticLaw = addkineticlaw(reaction,'Henri-Michaelis-Menten');

kineticLaw.Expression

ans =

Vm*S/(Km + S)

The kinetic law has two parameters and a species that you need to define. View these
parameters.



2 Methods — Alphabetical List

2-32

kineticLaw.ParameterVariables

kineticLaw.SpeciesVariables

ans = 

    'Vm'    'Km'

ans = 

    'S'

To define the parameters, create two parameter objects and set parameter values.

Vm_param = addparameter(kineticLaw,'Vm_param','Value',6.0);

Km_param = addparameter(kineticLaw,'Km_param','Value',1.25);

Map the parameters accordingly by setting the ParameterVariableNames property.
This associates the parameters in the expression with the two parameters you just
created using a one-to-one mapping in the order given.

kineticLaw.ParameterVariableNames = {'Vm_param','Km_param'};

Also associate the Substrate species with the species S in the expression.

kineticLaw.SpeciesVariableNames = {'Substrate'};

Verify the mapping by looking at the reaction rate and checking the parameters and
species are correctly substituted according to the expression.

reaction.ReactionRate

ans =

Vm_param*Substrate/(Km_param+Substrate)

Enter the initial amount of the substrate species for simulation.

model.Species(1).InitialAmount  = 8;

Simulate the model and plot results.



 addkineticlaw (reaction)

2-33

simdata  = sbiosimulate(model);

sbioplot(simdata);

See Also

addreaction, setparameter



2 Methods — Alphabetical List

2-34

addparameter (model, kineticlaw)

Create parameter object and add to model or kinetic law object

Syntax

parameterObj = addparameter(Obj, 'NameValue')

parameterObj = addparameter(Obj, 'NameValue', ValueValue)

parameterObj = addparameter(...'PropertyName', PropertyValue...)

Arguments

Obj Model or kinetic law object. Enter a variable name for the
object.

NameValue Property for a parameter object. Enter a unique character
string.

Since objects can use this property to reference a parameter,
a parameter object must have a unique name at the level it is
created. For example, a kinetic law object cannot contain two
parameter objects named kappa. However, the model object
that contains the kinetic law object can contain a parameter
object named kappa along with the kinetic law object.

For information on naming parameters, see Name.
ValueValue Property for a parameter object. Enter a number.

Description

parameterObj = addparameter(Obj, 'NameValue') creates a parameter object
and returns the object (parameterObj). In the parameter object, this method assigns a
value (NameValue) to the property Name, assigns a value 1 to the property Value, and
assigns the model or kinetic law object to the property Parent. In the model or kinetic
law object, (Obj), this method assigns the parameter object to the property Parameters.



 addparameter (model, kineticlaw)

2-35

A parameter object defines an assignment that a model or a kinetic law can use. The
scope of the parameter is defined by the parameter parent. If a parameter is defined with
a kinetic law object, then only the kinetic law object and objects within the kinetic law
object can use the parameter. If a parameter object is defined with a model object as its
parent, then all objects within the model (including all rules, events and kinetic laws) can
use the parameter.

modelObj = sbiomodel('cell')

parameterObj = addparameter(modelObj, 'TF1', 0.01)

modelObj = sbiomodel('cell')

reactionObj = addreaction(modelObj, 'a -> b')

kineticlawObj = addkineticlaw (reactionObj, 'MassAction')

parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1)

parameterObj = addparameter(Obj, 'NameValue', ValueValue) creates a
parameter object, assigns a value (NameValue) to the property Name, assigns the value



2 Methods — Alphabetical List

2-36

(ValueValue) to the property Value, and assigns the model object or the kinetic law
object to the property Parent. In the model or kinetic law object (Obj), this method
assigns the parameter object to the property Parameters, and returns the parameter
object to a variable (parameterObj).

parameterObj = addparameter(...'PropertyName', PropertyValue...)

defines optional property values. The property name/property value pairs can be in any
format supported by the function set (for example, name-value string pairs, structures,
and name-value cell array pairs).

Scope of a parameter — A parameter can be scoped to either a model or a kinetic law.

• When a kinetic law searches for a parameter in its expression, it first looks in the
parameter list of the kinetic law. If the parameter isn’t found there, it moves to the
model that the kinetic law object is in and looks in the model parameter list. If the
parameter isn’t found there, it moves to the model parent.

• When a rule searches for a parameter in its expression, it looks in the parameter
list for the model. If the parameter isn’t found there, it moves to the model parent. A
rule cannot use a parameter that is scoped to a kinetic law. So for a parameter to be
used in both a reaction rate equation and a rule, the parameter should be scoped to a
model.

Additional parameter object properties can be viewed with the get command. Additional
parameter object properties can be modified with the set command. The parameters of
Obj can be viewed with get(Obj, 'Parameters').

A SimBiology parameter object can be copied to a SimBiology model or kinetic law object
with copyobj. A SimBiology parameter object can be removed from a SimBiology model
or kinetic law object with delete.

Method Summary

Methods for parameter objects

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties



 addparameter (model, kineticlaw)

2-37

rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

set (any object) Set object properties

Property Summary

Properties for parameter objects

Example

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

3 Add a parameter and assign it to the kinetic law object (kineticlawObj); add
another parameter and assign to the model object (modelObj).

% Add parameter to kinetic law object

parameterObj1 = addparameter (kineticlawObj, 'K1');

get (kineticlawObj, 'Parameters')

MATLAB returns:

SimBiology Parameter Array

Index:    Name:    Value:    ValueUnits:

 1         K1       1             

% Add parameter with value 0.9 to model object

parameterObj1 = addparameter (modelObj, 'K2', 0.9);

get (modelObj, 'Parameters')

MATLAB returns:

SimBiology Parameter Array



2 Methods — Alphabetical List

2-38

 Index:    Name:    Value:    ValueUnits:

   1         K2       1      

See Also

addreaction



 addproduct (reaction)

2-39

addproduct (reaction)
Add product species object to reaction object

Syntax

speciesObj = addproduct(reactionObj, 'NameValue')

speciesObj = addproduct(reactionObj, speciesObj)

speciesObj = addproduct(reactionObj, 'NameValue', Stoichcoefficient)

speciesObj = addproduct(reactionObj, speciesObj, Stoichcoefficient)

Arguments

reactionObj Reaction object. Enter a name for the reaction object.
NameValue Property of a species object that names the object (not the

reaction object). Enter a unique character string. For example,
'fructose 6-phosphate'.

A species object can be referenced by other objects using this
property. You can use the function sbioselect to find an
object with a specific NameValue.

speciesObj Species object.
Stoichcoeffieient Stoichiometric coefficients for products, length of array equal

to length of NameValue, or length of speciesObj.

Description

speciesObj = addproduct(reactionObj, 'NameValue') creates a species object
and returns the species object (speciesObj). In the species object, this method assigns
the value (NameValue) to the property Name. In the reaction object, this method assigns
the species object to the property Products, modifies the reaction equation in the
property Reaction to include the new species, and adds the stoichiometric coefficient 1
to the property Stoichiometry.

When you define a reaction with a new species:



2 Methods — Alphabetical List

2-40

• If no compartment objects exist in the model, the method creates a compartment
object (called 'unnamed') in the model and adds the newly created species to that
compartment.

• If only one compartment object (compObj) exists in the model, the method creates a
species object in that compartment.

• If there is more than one compartment object (compObj) in the model, you must
qualify the species name with the compartment name.

For example, cell.glucose denotes that you want to put the species named
glucose into a compartment named cell. Additionally, if the compartment named
cell does not exist, the process of adding the reaction creates the compartment and
names it cell.

Create and add a species object to a compartment object with the method addspecies.

speciesObj = addproduct(reactionObj, speciesObj), in the species object
(speciesObj), assigns the parent object of the reactionObj to the species property
Parent. In the reaction object (reactionObj), it assigns the species object to the
property Products, modifies the reaction equation in the property Reaction to
include the new species, and adds the stoichiometric coefficient 1 to the property
Stoichiometry.

speciesObj = addproduct(reactionObj, 'NameValue', Stoichcoefficient),
in addition to the description above, adds the stoichiometric coefficient
(Stoichcoefficient) to the property Stoichiometry. If NameValue is a cell array
of species names, then Stoichcoefficient must be a vector of doubles with the same
length as NameValue.

speciesObj = addproduct(reactionObj, speciesObj, Stoichcoefficient),
in addition to the description above, adds the stoichiometric coefficient
(Stoichcoefficient) to the property Stoichiometry.

Species names are referenced by reaction objects, kinetic law objects, and model objects.
If you change the Name of a species the reaction also uses the new name. You must
however configure all other applicable elements such as rules that use the species, and
the kinetic law object.

Examples
1 Create a model object, and then add a reaction object.



 addproduct (reaction)

2-41

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'A + C -> U');

2 Modify the reaction of the reactionObj from A + C -> U to A + C -> U + 2 H.

speciesObj = addproduct(reactionObj, 'H', 2); 

See Also

addspecies



2 Methods — Alphabetical List

2-42

addreactant (reaction)
Add species object as reactant to reaction object

Syntax

speciesObj = addreactant(reactionObj, 'NameValue')

addreactant(reactionObj, speciesObj, StoichCoefficient)

addreactant(reactionObj, 'NameValue', StoichCoefficient)

Arguments

reactionObj Reaction object.
NameValue Name property of a species object. Enter a unique

character string, for example, 'glucose'. A species
object can be referenced by other objects using this
property.

You can use the function sbioselect to find an object
with a specific Name property value.

speciesObj Species object or cell array of species objects.
StoichCoefficient Stoichiometric coefficients for reactants, length of array

equal to length of NameValue or length of speciesObj.

Description

speciesObj = addreactant(reactionObj, 'NameValue') creates a species object
and returns the species object (speciesObj). In the species object, this method assigns
the value (NameValue) to the property Name. In the reaction object, this method assigns
the species object to the property Reactants, modifies the reaction equation in the
property Reaction to include the new species, and adds the stoichiometric coefficient -1
to the property Stoichiometry.

When you define a reaction with a new species:



 addreactant (reaction)

2-43

• If no compartment objects exist in the model, the method creates a compartment
object (called 'unnamed') in the model and adds the newly created species to that
compartment.

• If only one compartment object (compObj) exists in the model, the method creates a
species object in that compartment.

• If there is more than one compartment object (compObj) in the model, you must
qualify the species name with the compartment name.

For example, cell.glucose denotes that you want to put the species named
glucose into a compartment named cell. Additionally, if the compartment named
cell does not exist, the process of adding the reaction creates the compartment and
names it cell.

Create and add a species object to a compartment object with the method addspecies.

addreactant(reactionObj, speciesObj, StoichCoefficient), in the species
object (speciesObj), assigns the parent object to the speciesObj property Parent.
In the reaction object (reactionObj), it assigns the species object to the property
Reactants, modifies the reaction equation in the property Reaction to include the
new species, and adds the stoichiometric coefficient -1 to the property Stoichiometry.
If speciesObj is a cell array of species objects, then StoichCoefficient must be a
vector of doubles with the same length as speciesObj.

addreactant(reactionObj, 'NameValue', StoichCoefficient), in addition
to the description above, adds the stoichiometric coefficient (StoichCoefficient)
to the property Stoichiometry. If NameValue is a cell array of species names, then
StoichCoefficient must be a vector of doubles with the same length as NameValue.

Species names are referenced by reaction objects, kinetic law objects, and model objects.
If you change the Name of a species the reaction also uses the new name. You must,
however, configure all other applicable elements such as rules that use the species, and
the kinetic law object.

See for more information on species names.

Example

1 Create a model object, and then add a reaction object.



2 Methods — Alphabetical List

2-44

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'A -> U');

2 Modify the reaction of the reactionObj from A -> U to be A + 3 C -> U.

speciesObj = addreactant(reactionObj, 'C', 3); 

See Also

addspecies



 addreaction (model)

2-45

addreaction (model)
Create reaction object and add to model object

Syntax

reactionObj = addreaction(modelObj,'ReactionValue')

reactionObj = addreaction(modelObj, 'ReactantsValue',

'ProductsValue')

reactionObj = addreaction(modelObj, 'ReactantsValue',

RStoichCoefficients, 'ProductsValue', PStoichCoefficients)

reactionObj = addreaction(...'PropertyName', PropertyValue...)

Arguments

modelObj SimBiology model object.
ReactionValue Specify the reaction equation. Enter a character string.

A hyphen preceded by a space and followed by a right
angle bracket (->) indicates reactants going forward to
products. A hyphen with left and right angle brackets
(<->) indicates a reversible reaction. Coefficients before
reactant or product names must be followed by a space.

Examples are 'A -> B', 'A + B -> C', '2 A + B -
> 2 C', and 'A <-> B'. Enter reactions with spaces
between the species.

If there are multiple compartments, or
to specify the compartment name, use
compartmentName.speciesName.

Examples are 'cytoplasm.A -> cytoplasm.B',
'cytoplasm.A -> nucleus.A', and 'cytoplasm.A
+ cytoplasm.B -> nucleus.AB'.

ReactantsValue A string defining the species name, a cell array of
strings, a species object, or an array of species objects. If



2 Methods — Alphabetical List

2-46

using name strings, qualify with compartment names if
there are multiple compartments.

ProductsValue A string defining the species name, a cell array of
strings, a species object, or an array of species objects. If
using name strings, qualify with compartment names if
there are multiple compartments.

RStoichCoefficients Stoichiometric coefficients for reactants, length of array
equal to length of ReactantsValue.

PStoichCoefficients Stoichiometric coefficients for products, length of array
equal to length of ProductsValue.

Description

reactionObj = addreaction(modelObj,'ReactionValue') creates a reaction
object, assigns a value (ReactionValue) to the property Reaction, assigns reactant
species object(s) to the property Reactants, assigns the product species object(s) to the
property Products, and assigns the model object to the property Parent. In the Model
object (modelObj), this method assigns the reaction object to the property Reactions,
and returns the reaction object (reactionObj).

reactionObj = addreaction(modelObj, 'a -> b')

When you define a reaction with a new species:

• If no compartment objects exist in the model, the method creates a compartment
object (called 'unnamed') in the model and adds the newly created species to that
compartment.

• If only one compartment object (compObj) exists in the model, the method creates a
species object in that compartment.

• If there is more than one compartment object (compObj) in the model, you must
qualify the species name with the compartment name.



 addreaction (model)

2-47

For example, cell.glucose denotes that you want to put the species named
glucose into a compartment named cell. Additionally, if the compartment named
cell does not exist, the process of adding the reaction creates the compartment and
names it cell.

You can manually add a species to a compartment object with the method addspecies.

You can add species to a reaction object using the methods addreactant or
addproduct. You can remove species from a reaction object with the methods
rmreactant or rmproduct. The property Reaction is modified by adding or removing
species from the reaction equation.

You can copy a SimBiology reaction object to a model object with the function copyobj.
You can remove the SimBiology reaction object from a SimBiology model object with the
function delete.

You can view additional reaction object properties with the get command. For
example, the reaction equation of reactionObj can be viewed with the command
get(reactionObj, 'Reaction'). You can modify additional reaction object
properties with the command set.

reactionObj = addreaction(modelObj, 'ReactantsValue',

'ProductsValue') creates a reaction object, assigns a value to the property Reaction
using the reactant (ReactantsValue) and product (ProductsValue) names, assigns
the species objects to the properties Reactants and Products, and assigns the
model object to the property Parent. In the model object (modelObj), this method
assigns the reaction object to the property Reactions, and returns the reaction object
(reactionObj). The stoichiometric values are assumed to be 1.

reactionObj = addreaction(modelObj, 'ReactantsValue',

RStoichCoefficients, 'ProductsValue', PStoichCoefficients) adds
stoichiometric coefficients (RStoichCoefficients) for reactant species, and
stoichiometric coefficients (PStoichCoefficients) for product species to the property
Stoichiometry. The length of Reactants and RCoefficients must be equal, and the
length of Products and PCoefficients must be equal.

reactionObj = addreaction(...'PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in any format
supported by the function set (for example, name-value string pairs, structures, and
name-value cell array pairs).



2 Methods — Alphabetical List

2-48

Note: If you use the addreaction method to create a reaction rate expression that is not
continuous and differentiable, see “Using Events to Address Discontinuities in Rule and
Reaction Rate Expressions” before simulating your model.

Method Summary
Methods for reaction objects

addkineticlaw (reaction) Create kinetic law object and add to
reaction object

addproduct (reaction) Add product species object to reaction
object

addreactant (reaction) Add species object as reactant to reaction
object

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

rmproduct (reaction) Remove species object from reaction object
products

rmreactant (reaction) Remove species object from reaction object
reactants

set (any object) Set object properties

Property Summary
Properties for reaction objects

Examples
Create a model, add a reaction object, and assign the expression for the reaction rate
equation.



 addreaction (model)

2-49

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm

and Km) and one species variable (S) that should to be set. To set these variables,
first create the parameter variables as parameter objects (parameterObj1,
parameterObj2) with names Vm_d, and Km_d, and assign the objects Parent
property value to the kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');

parameterObj2 = addparameter(kineticlawObj, 'Km_d');

4 Set the variable names for the kinetic law object.
set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});

set(kineticlawObj,'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction object
ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d+a)

See Also

addkineticlaw, addproduct, addreactant, rmproduct, rmreactant



2 Methods — Alphabetical List

2-50

addrule (model)

Create rule object and add to model object

Syntax

ruleObj = addrule(modelObj, Rule)

ruleObj = addrule(modelObj, Rule, RuleType)

ruleObj = addrule(..., 'PropertyName', PropertyValue,...)

Arguments

modelObj Model object to which to add the rule.
Rule String specifying the rule. For example, enter the algebraic

rule 'Va*Ea + Vi*Ei - K2'.
RuleType String specifying the type of rule. Choices are:

• 'algebraic'

• 'initialAssignment'

• 'repeatedAssignment'

• 'rate'

For more information, see RuleType

Description

A rule is a mathematical expression that changes the amount of a species or the value of
a parameter. It also defines how species and parameters interact with one another.

ruleObj = addrule(modelObj, Rule) constructs and returns ruleObj, a rule
object. In ruleObj, the rule object, this method assigns the modelObj input argument
to the Parent property, assigns the Rule input argument to the Rule property, and
assigns 'initialAssignment' or 'algebraic' to the RuleType property. (This



 addrule (model)

2-51

method assigns 'initialAssignment' for all assignment rules and 'algebraic' for
all other rules.) In modelObj, the model object, this method assigns ruleObj, the rule
object, to the Rules property.

ruleObj = addrule(modelObj, Rule, RuleType) in addition to the assignments
above, assigns the RuleType input argument to the RuleType property. For more
information on the types of rules, see RuleType.

ruleObj = addrule(..., 'PropertyName', PropertyValue,...) defines
optional properties. The property name/property value pairs can be in any format
supported by the function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

View additional rule properties with the function get, and modify rule properties with
the function set. Copy a rule object to a model with the function copyobj, or delete a
rule object from a model with the function delete.

Note: If you use the addrule method to create an algebraic rule, rate rule, or repeated
assignment rule, and the rule expression is not continuous and differentiable, see
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” before
simulating your model.

Method Summary

Methods for rule objects

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
set (any object) Set object properties

Property Summary

Properties for rule objects



2 Methods — Alphabetical List

2-52

Examples

Add a rule with the default RuleType.

1 Create a model object, and then add a rule object.

modelObj = sbiomodel('cell');

ruleObj = addrule(modelObj, '0.1*B-A')

2 Get a list of properties for a rule object.

get(modelObj.Rules(1)) or get(ruleObj)

    

MATLAB displays a list of rule properties.

    Active: 1

    Annotation: ''

          Name: ''

         Notes: ''

        Parent: [1x1 SimBiology.Model]

          Rule: '0.1*B-A'

      RuleType: 'algebraic'

           Tag: ''

          Type: 'rule'

      UserData: []

Add a rule with the RuleType property set to rate.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule which defines that the quantity of a species c. In the rule expression, k is
the rate constant for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')

3 Change the RuleType from default ('algebraic') to 'rate', and verify using the
get command.

set(ruleObj, 'RuleType', 'rate');

get(ruleObj)

MATLAB returns all the properties for the rule object.



 addrule (model)

2-53

    Active: 1

Annotation: ''

      Name: ''

     Notes: ''

    Parent: [1x1 SimBiology.Model]

      Rule: 'c = k*(a+b)'

  RuleType: 'rate'

       Tag: ''

      Type: 'rule'

  UserData: []

See Also

copyobj, delete, sbiomodel



2 Methods — Alphabetical List

2-54

addspecies (model, compartment)

Create species object and add to compartment object within model object

Syntax

speciesObj = addspecies(compObj, 'NameValue')

speciesObj = addspecies(compObj, 'NameValue', InitialAmountValue)

speciesObj = addspecies(modelObj, 'NameValue')

speciesObj = addspecies(modelObj, 'NameValue', InitialAmountValue)

speciesObj = addspecies(...'PropertyName', PropertyValue...)

Arguments

compObj Compartment object.
modelObj Model object containing zero or one compartment.
NameValue Name for a species object. Enter a character string

unique among species within modelObj or compObj.
Species objects are identified by name within Event,
ReactionRate, and Rule property strings.

For information on naming species, see Name.

You can use the function sbioselect to find an object
with a specific Name property value.

InitialAmountValue Initial amount value for the species object. Enter double.
Positive real number, default = 0.

PropertyName Enter the name of a valid property. Valid property names
are listed in “Property Summary” on page 2-56.

PropertyValue Enter the value for the property specified in
PropertyName. Valid property values are listed on each
property reference page.



 addspecies (model, compartment)

2-55

Description

speciesObj = addspecies(compObj, 'NameValue') creates speciesObj, a
species object, and adds it to compObj, a compartment object. In the species object,
this method assigns NameValue to the Name property, assigns compObj to the Parent
property, and assigns 0 to the InitialAmount property. In the compartment object, this
method adds the species object to the Species property.

speciesObj = addspecies(compObj, 'NameValue', InitialAmountValue), in
addition to the above, assigns InitialAmountValue to the InitialAmount property
for the species object.

speciesObj = addspecies(modelObj, 'NameValue') creates speciesObj, a
species object, and adds it to compObj, the compartment object in modelObj, a model
object. If modelObj does not contain any compartments, it creates compObj with a
Name property of 'unnamed'. In the species object, this method assigns NameValue
to the Name property, assigns compObj to the Parent property, and assigns 0 to the
InitialAmount property. In the compartment object, this method adds the species
object to the Species property.

speciesObj = addspecies(modelObj, 'NameValue', InitialAmountValue), in
addition to the above, assigns InitialAmountValue to the InitialAmount property
for the species object.

You can also add a species to a reaction using the methods addreactant and
addproduct.

A species object must have a unique name at the level at which it is created. For
example, a compartment object cannot contain two species objects named H2O. However,
another compartment can have a species named H2O.

View properties for a species object with the get command, and modify properties for a
species object with the set command. You can view a summary table of species objects
in a compartment (compObj) with get(compObj, 'Species') or the properties of the
first species with get(compObj.Species(1)).

speciesObj = addspecies(...'PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in any format
supported by the function set (for example, name-value string pairs, structures, and



2 Methods — Alphabetical List

2-56

name-value cell array pairs). The property summary on this page shows the list of
properties.

If there is more than one compartment object (compObj) in the model, you must qualify
the species name with the compartment name. For example, cell.glucose denotes
that you want to put the species named glucose into a compartment named cell.
Additionally, if the compartment named cell does not exist, the process of adding the
reaction creates the compartment and names it cell.

If you change the name of a species you must configure all applicable elements, such as
events and rules that use the species, any user-specified ReactionRate, or the kinetic
law object property SpeciesVariableNames. Use the method setspecies to configure
SpeciesVariableNames.

To update species names in the SimBiology graphical user interface, access each
appropriate pane through the Project Explorer. You can also use the Find feature to
locate the names that you want to update. The Output pane opens with the results of
Find. Double-click a result row to go to the location of the model component.

Species names are automatically updated for reactions that use MassAction kinetic law.

Method Summary

Methods for species objects

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

set (any object) Set object properties

Property Summary

Properties for species objects



 addspecies (model, compartment)

2-57

Examples

Add two species to a model, where one is a reactant and the other is the enzyme
catalyzing the reaction.

1 Create a model object named my_model and add a compartment object.

modelObj = sbiomodel ('my_model');

compObj = addcompartment(modelObj, 'comp1');

2 Add two species objects named glucose_6_phosphate and
glucose_6_phosphate_dehydrogenase.

speciesObj1 = addspecies (compObj, 'glucose_6_phosphate');

speciesObj2 = addspecies (compObj, ...

                         'glucose_6_phosphate_dehydrogenase');

3 Set the initial amount of glucose_6_phosphate to 100 and verify.

set (speciesObj1, 'InitialAmount',100);

get (speciesObj1, 'InitialAmount')

MATLAB returns:

ans =

   100

4 Use get to note that modelObj contains the species object array.

get(compObj, 'Species')

MATLAB returns:
SimBiology Species Array

Index: Name:                             InitialAmount: InitialAmountUnits:

 1     glucose_6_phosphate                100               

 2     glucose_6_phosphate_dehydrogenase  0                 

5 Retrieve information about the first species in the array.

get(compObj.Species(1))

            Annotation: ''

     BoundaryCondition: 0

        ConstantAmount: 0

         InitialAmount: 100

    InitialAmountUnits: ''



2 Methods — Alphabetical List

2-58

                  Name: 'glucose_6_phosphate'

                 Notes: ''

                Parent: [1x1 SimBiology.Compartment]

                   Tag: ''

                  Type: 'species'

              UserData: []

See Also

addcompartment, addproduct, addreactant, addreaction, get, set



 addvariant (model)

2-59

addvariant (model)

Add variant to model

Syntax

variantObj = addvariant(modelObj, 'NameValue')

variantObj2 = addvariant(modelObj, variantObj)

Arguments

modelObj Specify the model object to which you want add a variant.
variantObj Variant object to create and add to the model object.
NameValue Name of the variant object. NameValue is assigned to the

Name property of the variant object.

Description

variantObj = addvariant(modelObj, 'NameValue') creates a SimBiology variant
object (variantObj) with the name NameValue and adds the variant object to the
SimBiology model object modelObj. The variant object Parent property is assigned the
value of modelObj.

A SimBiology variant object stores alternate values for properties on a SimBiology model.
For more information on variants, see Variant object.

variantObj2 = addvariant(modelObj, variantObj) adds a SimBiology variant
object (variantObj) to the SimBiology model object and returns another variant object
variantObj2. The variant object variantObj2 Parent property is assigned the value
of modelObj.

View properties for a variant object with the get command, and modify properties for a
variant object with the set command.



2 Methods — Alphabetical List

2-60

Note: Remember to use the addcontent method instead of using the set method on the
Content property, because the set method replaces the data in the Content property,
whereas addcontent appends the data.

To view the variants stored on a model object, use the getvariant method. To copy
a variant object to another model, use copyobj. To remove a variant object from a
SimBiology model, use the delete method.

Examples

1 Create a model containing one species.

modelObj = sbiomodel('mymodel');

compObj = addcompartment(modelObj, 'comp1');

speciesObj = addspecies(compObj, 'A');

2 Add a variant object that varies the InitialAmount property of a species named A.

variantObj = addvariant(modelObj, 'v1');

addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also

addcontent, commit, copyobj, delete, getvariant



 boxplot(LeastSquaresResults,OptimResults,NLINResults)

2-61

boxplot(LeastSquaresResults,OptimResults,NLINResults)
Create box plot showing the variation of estimated SimBiology model parameters

Syntax

boxplot(resultsObj)

Description

boxplot(resultsObj) creates a box plot showing the variation of the estimated
SimBiology model parameters.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object,
or vector of results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-62

boxplot(NLMEResults)
Create box plot showing the variation of estimated SimBiology model parameters

Syntax

boxplot(resultsObj)

Description

boxplot(resultsObj) creates a box plot showing the variation of the estimated
SimBiology model parameters.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results from running sbiofitmixed.

See Also
NLMEResults object | sbiofitmixed



 commit (variant)

2-63

commit (variant)
Commit variant contents to model

Syntax

commit(variantObj, modelObj)

Arguments

modelObj Specify the model object to which you want to commit a
variant.

variantObj Variant object to commit to the model object.

Description

commit(variantObj, modelObj) commits the Contents property of a SimBiology
variant object (variantObj) to the model object modelObj. The property values stored
in the variant object replace the values stored in the model.

A SimBiology variant object stores alternate values for properties on a SimBiology model.
For more information on variants, see Variant object.

The Contents are set on the model object in order of occurrence, with duplicate entries
overwriting. If the commit method finds an incorrectly specified entry, an error occurs
and the remaining properties defined in the Contents property are not set.

Examples

1 Create a model containing one species.

modelObj = sbiomodel('mymodel');

compObj = addcompartment(modelObj, 'comp1');

speciesObj = addspecies(compObj, 'A', 10);



2 Methods — Alphabetical List

2-64

2 Add a variant object that varies the InitialAmount property of a species named A.

variantObj = addvariant(modelObj, 'v1');

addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

3 Commit the contents of the variant (variantObj).

commit (variantObj, modelObj);

See Also

addvariant, Variant object



 Compartment object

2-65

Compartment object
Options for compartments

Description

The SimBiology compartment object represents a container for species in a model.
Compartment size can vary or remain constant during a simulation. All models
must have at least one compartment and all species in a model must be assigned to a
compartment. Compartment names must be unique within a model.

Compartments allow you to define the size (Capacity) of physically isolated regions
that may affect simulation, and associate pools of species within those regions. You can
specify or change Capacity using rules, events, and variants, similar to species amounts
or parameter values.

The model object stores compartments as a flat list. Each compartment stores
information on its own organization; in other words a compartment has information on
which compartment it lives within (Owner) and who it contains (Compartments).

The flat list of compartments in the model object lets you vary the way compartments are
organized in your model without invalidating any expressions.

To add species that participate in reactions, add the reaction to the model using the
addreaction method. When you define a reaction with a new species:

• If no compartment objects exist in the model, the addreaction method creates a
compartment object (called 'unnamed') in the model and adds the newly created
species to that compartment.

• If only one compartment object exists in the model, the method creates a species
object in that compartment.

• If there is more than one compartment object in the model, you must qualify the
species name with the compartment name.

For example, cell.glucose denotes that you want to put the species named
glucose into a compartment named cell. Additionally, if the compartment named
cell does not exist, the process of adding the reaction creates the compartment and
names it cell.



2 Methods — Alphabetical List

2-66

Alternatively, create and add a species object to a compartment object, using the
addspecies method at the command line.

When you use the SimBiology desktop to create a new model, it adds an empty
compartment (unnamed), to which you can add species.

You can specify reactions that cross compartments using the syntax
compartment1Name.species1Name –> compartment2Name.species2Name. If you
add a reaction that contains species from different compartments, and the reaction rate
dimensions are concentration/time, all reactants should be from the same compartment.

In addition, if the reaction is reversible then there are two cases:

• If the kinetic law is MassAction, and the reaction rate reaction rate dimensions are
concentration/time, then the products must be from the same compartment.

• If the kinetic law is not MassAction, then both reactants and products must be in the
same compartment.

See “Property Summary” on page 2-67 for links to compartment property reference
pages. Properties define the characteristics of an object. Use the get and set commands
to list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.

Constructor Summary

addcompartment (model, compartment)  
Create compartment object

Method Summary

Methods for compartment objects

addcompartment (model, compartment)  
Create compartment object

addspecies (model, compartment)  
Create species object and add to
compartment object within model object



 Compartment object

2-67

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

reorder (model, compartment, kinetic law)  
Reorder component lists

set (any object) Set object properties

Property Summary

Properties for compartment objects

See Also

AbstractKineticLaw object, Configset object, KineticLaw object, Model
object, Parameter object, Reaction object, Root object, Rule object



2 Methods — Alphabetical List

2-68

Configset object
Solver settings information for model simulation

Description

The SimBiology configset object, also known as the configuration set object, contains the
options that the solver uses during simulation of the model object. The configuration set
object contains the following options for you to choose:

• Type of solver
• Stop time for the simulation
• Solver error tolerances, and for ode solvers — the maximum time step the solver

should take
• Whether to perform sensitivity analysis during simulation
• Whether to perform dimensional analysis and unit conversion during simulation
• Species and parameter input factors for sensitivity analysis

A SimBiology model can contain multiple configsets with one being active at any given
time. The active configset contains the settings that are used during the simulation.
Use the method setactiveconfigset to define the active configset. Use the method
getconfigset to return a list of configsets contained by a model. Use the method
addconfigset to add a new configset to a model.

See “Property Summary” on page 2-69 for links to configset object property reference
pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the SimBiology desktop.

Constructor Summary

addconfigset (model) Create configuration set object and add to
model object



 Configset object

2-69

Method Summary

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
set (any object) Set object properties

Property Summary

See Also

AbstractKineticLaw object, KineticLaw object, Model object, Parameter
object, Reaction object, Root object, Rule object, Species object



2 Methods — Alphabetical List

2-70

construct (PKModelDesign)
Construct SimBiology model from PKModelDesign object

Syntax
[modelObj, pkModelMapObject] = construct(pkModelDesignObject)

[modelObj, pkModelMapObject, CovModelObj] =

construct(pkModelDesignObject)

Arguments

modelObj SimBiology model object specifying a pharmacokinetic
model.

pkModelMapObject Defines the roles of the components in modelObj. For
details, see PKModelMap object.

CovModelObj Defines the relationship between parameters and
covariates. For details, see CovariateModel object.

Description
[modelObj, pkModelMapObject] = construct(pkModelDesignObject)

constructs a SimBiology model object, modelObj, containing the model components
(such as compartments, species, reactions, and rules) required to represent the
pharmacokinetic model specified in pkModelDesignObject. It also constructs
pkModelMapObject, a PKModelMap object, which defines the roles of the model
components.

The newly constructed model object, modelObj, is named 'Generated Model' (which
you can change). It contains one compartment for each compartment specified in the
PKCompartment property of pkModelDesignObject. Each compartment contains a
species that represents a drug concentration. The compartments are connected with
reversible reactions that models flux between compartments.

[modelObj, pkModelMapObject, CovModelObj] =

construct(pkModelDesignObject) constructs CovModelObj, a CovariateModel



 construct (PKModelDesign)

2-71

object, which defines the relationship between parameters and covariates. Within
the Expression property of CovModelObj, each parameter being estimated has an
expression of the form parameterName = exp(theta1 + eta1) (without covariate
dependencies), where theta1 is a fixed effect, and eta1 is a random effect. You can
modify the expressions to add covariate dependencies. For details, see CovariateModel
object object.

More About
• “Create a Pharmacokinetic Model Using the Command Line”
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”

See Also
PKModelDesign object | CovariateModel object | PKModelMap object



2 Methods — Alphabetical List

2-72

constructDefaultFixedEffectValues (covmodel)
Create initial estimate vector needed for fit

Syntax

FEInitEstimates = constructDefaultFixedEffectValues(CovModelObj)

Description

FEInitEstimates = constructDefaultFixedEffectValues(CovModelObj)

creates FEInitEstimates, a structure containing the initial estimates for the fixed
effects in CovModelObj, a CovariateModel object. These initial estimates are set to a
default of zero, but you can edit these estimates. The number and names of the fields in
the FEInitEstimates structure matches the number and names of fixed effects (theta
values) in the Expression (CovariateModel) property of CovModelObj.

Tip After creating the FEInitEstimates structure, you can edit it and use it to change
the FixedEffectValues property of CovModelObj, before using the object as an input
argument to sbionlmefit or sbionlmefitsa.

More About
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”

See Also
CovariateModel object | Expression (CovariateModel) |
FixedEffectValues (CovariateModel) | sbionlmefit | sbionlmefitsa



 copyobj (any object)

2-73

copyobj (any object)
Copy SimBiology object and its children

Syntax

copiedObj = copyobj(Obj, parentObj)

copiedObj = copyobj(modelObj)

Arguments

Obj Abstract kinetic law, compartment, configuration set, event,
kinetic law, model, parameter, reaction, rule, species, or variant
object.

parentObj If copiedObj is... parentObj must be...

configuration set, event,
reaction, rule, or variant object

model object

compartment object compartment or model object
species object compartment object
parameter object model or kinetic law object
kinetic law object reaction object
model object or abstract kinetic
law object

sbioroot

modelObj Model object to be copied.
copiedObj Output returned by the copyobj method with the parent set as

specified in input argument (parentObj).

Description

copiedObj = copyobj(Obj, parentObj) makes a copy of a SimBiology object (Obj)
and returns a pointer to the copy (copiedObj). In the copied object (copiedObj), this
method assigns a value (parentObj) to the property Parent.



2 Methods — Alphabetical List

2-74

copiedObj = copyobj(modelObj) makes a copy of a model object (modelObj) and
returns the copy (copiedObj). In the copied model object (copiedObj), this method
assigns the root object to the property Parent.

Note: When the copyobj method copies a model, it resets the StatesToLog property
to the default value. Similarly, the Inputs and Outputs properties are not copied but
rather left empty. Thus, when you simulate a copied model you see results for the default
states, unless you manually update these properties.

Examples

Create a reaction object separate from a model object, and then add it to a model.

1 Create a model object and add a reaction object.

modelObj1 = sbiomodel('cell');

reactionObj = addreaction(modelObj1, 'a -> b');

2 Create a copy of the reaction object and assign it to another model object.

modelObj2 = sbiomodel('cell2');

reactionObjCopy = copyobj(reactionObj, modelObj2);

modelObj2.Reactions

SimBiology Reaction Array

Index:    Reaction:

 1         a -> b

See Also

sbiomodel, sbioroot



 CovariateModel object

2-75

CovariateModel object
Define relationship between parameters and covariates

Description

CovariateModel defines the relationship between estimated parameters and
covariates.

Tip Use a CovariateModel object as an input argument to sbiofitmixed to fit a
model with covariate dependencies. Before using the CovariateModel object, set the
FixedEffectValues (CovariateModel) property to specify the initial estimates for
the fixed effects.

Construction

CovModelObj = CovariateModel creates an empty CovariateModel object.

CovModelObj = CovariateModel(Expression) creates a CovariateModel object
with its Expression property set to Expression, a string or cell array of strings, where
each string represents the relationship between a parameter being estimated and one
or more covariates. Expression must denote fixed effects with the prefix theta, and
random effects with the prefix eta. Each string in Expression must be in the form:
parameterName = relationship

This example of an expression string defines the relationship between a parameter
(volume) and a covariate (weight), with fixed effects, but no random effects:
Expression = {'volume = theta1 + theta2*weight'};

This table illustrates expression formats for some common parameter-covariate
relationships.

Parameter-Covariate
Relationship

Expression Format

Linear with random effect Cl = theta1 + theta2*WEIGHT + eta1



2 Methods — Alphabetical List

2-76

Parameter-Covariate
Relationship

Expression Format

Exponential without random
effect

Cl = exp(theta_Cl + theta_Cl_WT*WEIGHT)

Exponential, WEIGHT
centered by mean, has
random effect

Cl = exp(theta1 + theta2*(WEIGHT -

mean(WEIGHT)) + eta1)

Exponential, log(WEIGHT),
which is equivalent to power
model

Cl = exp(theta1 + theta2*log(WEIGHT) + eta1)

Exponential, dependent on
WEIGHT and AGE, has
random effect

Cl = exp(theta1 + theta2*WEIGHT + theta3*AGE

+ eta1)

Inverse of probit, dependent
on WEIGHT and AGE, has
random effect

Cl = probitinv(theta1 + theta2*WEIGHT +

theta3*AGE + eta1)

Inverse of logit, dependent
on WEIGHT and AGE, has
random effect

Cl = logitinv(theta1 + theta2*WEIGHT +

theta3*AGE + eta1)

Tip To simultaneously fit data from multiple dose levels, use a CovariateModel object
as an input argument to sbiofitmixed, and omit the random effect (eta) from the
Expression property in the CovariateModel object.

Method Summary

constructDefaultFixedEffectValues
(covmodel)

 
Create initial estimate vector needed for fit

verify (covmodel) Check covariate model for errors



 CovariateModel object

2-77

Properties

Examples

Create a CovariateModel object and set the Expression property to define the
relationship between two parameters (clearance and volume) and two covariates (weight
and age) using fixed effects (thetas) and random effects (etas):

covModelObj = CovariateModel

covModelObj.Expression = {'CL = theta1 + theta2*WT + eta1', 'V = theta3 + theta4*AGE + eta2'};

More About
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”

See Also
construct | PKModelDesign object | getCovariateData (pkdata) | PKData
object | sbionlmefit | sbionlmefitsa



2 Methods — Alphabetical List

2-78

covariateModel(NLMEResults)
Return a copy of the covariate model that was used for the nonlinear mixed-effects
estimation using sbiofitmixed

Syntax

covmodel = covariateModel(resultsObj)

Description

covmodel = covariateModel(resultsObj) returns a copy of the covariate model
that was used for the nonlinear mixed-effects estimation using sbiofitmixed.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results from running sbiofitmixed.

Output Arguments

covmodel — Covariate model
CovariateModel object

Covariate model, returned as a CovariateModel object, that was used for the
nonlinear mixed-effects estimation using sbiofitmixed. The model describes the
relationship between SimBiology model parameters, fixed effects, random effects, and
covariates.

See Also
NLMEResults object | sbiofitmixed



 createDoses(groupedData)

2-79

createDoses(groupedData)
Create dose objects from groupedData object

Syntax

doseArray = createDoses(grpData,amountVarNames)

doseArray = createDoses(grpData,amountVarNames,rateVarNames)

doseArray = createDoses(grpData,amountVarNames,rateVarNames,

tempDoses)

Description

doseArray = createDoses(grpData,amountVarNames) creates an array of
SimBiology dose objects using dose times and amount data specified in grpData, with
one row per group and one column per dose amount variable.

grpData.Properties.IndependentVariable specifies which variable contains dose
times, and amountVarNames specifies which variables contain valid dose amounts.

doseArray = createDoses(grpData,amountVarNames,rateVarNames) uses dose
rate variables specified by rateVarNames.

doseArray = createDoses(grpData,amountVarNames,rateVarNames,

tempDoses) uses template doses specified by tempDoses as templates for dose
objects in doseArray. The string (nonnumeric) properties of template dose objects in
tempDoses are copied into the dose objects in doseArray. This argument lets you
initialize string properties of dose objects such as Name, TargetName, AmountUnits, and
TimeUnits.

Input Arguments

grpData — Grouped data
groupedData object

Grouped data, specified as a groupedData object.



2 Methods — Alphabetical List

2-80

amountVarNames — Amount variable names
string | cell array of strings

Amount variable names, specified as a string or a cell array of strings that specifies
variables in grpData that define dose amounts. Each string must specify a valid amount
variable.

An amount variable is valid if it is a real, nonnegative column vector containing no
infinite values.

rateVarNames — Rate variable names
string | cell array of strings

Rate variable names, specified as a string or a cell array of strings that specify variables
in grpData that define dose rates. If it is empty [] or {}, it indicates there are no dose
rates. If it is not empty, it must be a string or cell array of strings of the same length as
amountVarNames. Individual strings must be empty strings '' indicating no dose rates
for the corresponding doses or valid rate variables in grpData specifying dose rates.

A rate variable is valid if it is a real, nonnegative column vector containing no infinite
values. NaN rate values are allowed, but they are treated the same as the rate values of 0.

tempDoses — Template doses
dose object | vector of dose object | []

Template doses, specified as a dose object (ScheduleDose object or RepeatDose
object), vector of dose objects, or empty array []. If tempDoses is a single dose object,
the nonnumeric properties of this object are copied to all doses in doseArray. If it
is a vector, it must have the same length as amountVarNames, and the nonnumeric
properties from each element are copied to the corresponding column of doses in
doseArray.

Output Arguments

doseArray — SimBiology dose objects
2-D matrix of dose objects

SimBiology dose objects, returned as a 2-D matrix of dose objects containing dose time
and amount data from grpData. If dose times for a particular dose in grpData are
regularly spaced, then the corresponding dose object in doseArray is a RepeatDose
object. Otherwise, the corresponding dose object is a ScheduleDose object.



 createDoses(groupedData)

2-81

Note: If there is a single dose time, then the dose object is represented as a
ScheduleDose object.

Examples

Create an Array of Dose Objects from GroupedData

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or
more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of
newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the sample data set.

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the properties.

grpData.Properties

ans = 

                Description: 'This dataset was generated using sbionmimport.

FileNa...'

       VariableDescriptions: {}

              VariableUnits: {}

             DimensionNames: {'Observations'  'Variables'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'Time'  'Dose'  'Response'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'

GroupVariableName and IndpendentVariableName have been automatically
assigned to 'ID' and 'Time', respectively.



2 Methods — Alphabetical List

2-82

Create an array of dose objects using the dosing information from grpData specified by
the DOSE variable.

doseArray = createDoses(grpData,'DOSE');

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–
83.

See Also
groupedData object | RepeatDose object | ScheduleDose object | table



 createSimFunction (model)

2-83

createSimFunction (model)
Create SimFunction object

Syntax
F = createSimFunction(model,params,observables,dosed)

F = createSimFunction( ___ ,Name,Value)

Description
F = createSimFunction(model,params,observables,dosed) creates a
SimFunction object F that you can execute like a function handle. The params
and observables arguments define the inputs and outputs of the function F when it
is executed, and dosed defines the dosing information of species. See SimFunction
object for details on how to execute F.

F = createSimFunction( ___ ,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Note:

• Active doses and variants of the model are ignored when F is executed.

• F is immutable after it is created.
• F is automatically accelerated at the first function execution. However, manually

accelerate the object if you want it accelerated in your deployment applications.

Input Arguments
model — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

params — Inputs of SimFunction F
string | cell array of strings | {}



2 Methods — Alphabetical List

2-84

Inputs of SimFunction F, specified as a string, cell array of strings, or an empty cell
array {}. The strings represent the names of model quantities (species, compartments,
or parameters) that define the inputs of F. Use an empty cell array {} to create a
SimFunction object that has no parameters.

To unambiguously name a model quantity, use the qualified name, which includes the
name of the compartment. To name a reaction-scoped parameter, use the reaction name
to qualify the parameter. If the name is not a valid MATLAB variable name, surround it
by square brackets such as [reaction 1].[parameter 1].

observables — Outputs of SimFunction F
string | cell array of strings

Outputs of SimFunction F, specified as a string or cell array of strings. The strings
represent the names of model quantities (species, compartments, or parameters) that
define the outputs of F.

dosed — Dosed species or dose objects
string | cell array of strings | vector of dose objects | []

Dosed species or dose objects, specified as a string, cell array of strings, vector of dose
objects, or empty array []. If it is a vector, it must be 1-by-N vector, where N is the
number of dosed species. Use [] to specify no species are dosed.

If dose objects contain any data for Time, Value, or Rate properties, they are
ignored and a warning is issued. Only TargetName, DurationParameterName, and
LagParameterName properties of each dose object are used.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'UseParallel',true specifies to execute the SimFunction F in parallel.

'UseParallel' — Flag to execute SimFunction F in parallel
false (default) | true

Flag to execute SimFunction F in parallel, specified as the comma-separated pair
consisting of 'UseParallel' and true or false. If true and Parallel Computing
Toolbox is available, the SimFunction F is executed in parallel.



 createSimFunction (model)

2-85

Example: 'UseParallel',true

'SensitivityOutputs' — Sensitivity output factors
{} (default) | cell array of strings | 'all'

Sensitivity output factors, specified as the comma-separated pair consisting of
'SensitivityOutputs' and a cell array of strings. The strings are the names of model
quantities (species and parameters) for which you want to compute the sensitivities. The
default is {} meaning there is no output factors. Output factors are the numerators of
time-dependent derivatives explained in “Sensitivity Calculation”.

Use the keyword 'all' to specify all model quantities listed in the observables
argument as sensitivity outputs. However, {'all'} means a model quantity named all
in the model.

You must specify both 'SensitivityOutputs' and 'SensitivityInputs' name-
value pair arguments for sensitivity calculations.
Example: 'SensitivityOutputs','all'

'SensitivityInputs' — Sensitivity input factors
{} (default) | cell array of strings | 'all'

Sensitivity input factors, specified as the comma-separated pair consisting of
'SensitivityInputs' and a cell array of strings. The strings are the names of model
quantities (species, compartments, and parameters) with respect to which you want to
compute the sensitivities. The default is {} meaning no input factors. Input factors are
the denominators of time-dependent derivatives explained in “Sensitivity Calculation”.

Use the keyword 'all' to specify all model quantities listed in the params argument as
sensitivity inputs. However, {'all'} means a model quantity named all in the model.

You must specify both 'SensitivityOutputs' and 'SensitivityInputs' name-
value pair arguments for sensitivity calculations.
Example: 'SensitivityInputs',{'Reaction1.c1','Reaction1.c2'}

'SensitivityNormalization' — Normalization for calculated sensitivities
'None' (default) | 'Half | 'Full'

Normalization for calculated sensitivities, specified as the comma-separated pair
consisting of 'SensitivityNormalization' and 'None', 'Half', or 'Full'.

• 'None' — No normalization (default)



2 Methods — Alphabetical List

2-86

• 'Half' — Normalization relative to the numerator only
• 'Full' — Full dedimensionalization

For details, see Normalization.

Example: 'SensitivityNormalization','Full'

Output Arguments

F — SimFunction
SimFunction object | SimFunctionSensitivity object

SimFunction, returned as a SimFunction object or SimFunctionSensitivity
object. You can execute F like a function handle.

F is a SimFunctionSensitivity object if you specify non-empty
'SensitivityOutputs' and 'SensitivityInputs' name-value pair arguments.

Examples

Create a SimFunction Object

This example uses a radioactive decay model with the first-order reaction dz

dt
c x= i , where

x and z are species and c is the forward rate constant.

Load the sample project containing the radioactive decay model m1.

sbioloadproject radiodecay;

Create a SimFunction object, specifying the parameter Reaction1.c to be scanned,
and species x as the output of the function with no dosed species.

f = createSimFunction(m1, 'Reaction1.c','x', [])

f = 

SimFunction

Parameters:



 createSimFunction (model)

2-87

        Name         Value       Type          Units   

    _____________    _____    ___________    __________

    'Reaction1.c'    0.5      'parameter'    '1/second'

Observables: 

    Name      Type         Units   

    ____    _________    __________

    'x'     'species'    'molecule'

Dosed: None

If the UnitConversion option was set to false when the SimFunction object f was
created, the table does not display the units of the model quantities.

To illustrate this, first set the UnitConversion option to false.

m1.getconfigset.CompileOptions.UnitConversion = false;

Create the SimFunction object as before and note that the variable named Units
disappears.

f = createSimFunction(m1, {'Reaction1.c'},{'x'}, [])

f = 

SimFunction

Parameters:

        Name         Value       Type    

    _____________    _____    ___________

    'Reaction1.c'    0.5      'parameter'

Observables: 

    Name      Type   

    ____    _________

    'x'     'species'

Dosed: None



2 Methods — Alphabetical List

2-88

If any of the species in the model is being dosed, specify the names of dosed species as
the last argument. For example, if the species x is being dosed, specify it as the last
argument.

f = createSimFunction(m1, {'Reaction1.c'},{'x'}, 'x')

f = 

SimFunction

Parameters:

        Name         Value       Type    

    _____________    _____    ___________

    'Reaction1.c'    0.5      'parameter'

Observables: 

    Name      Type   

    ____    _________

    'x'     'species'

Dosed: 

    TargetName

    __________

    'x'  

Once the SimFunction object is created, you can execute it like a function handle and
perform parameter scans (in parallel if Parallel Computing Toolbox is available), Monte
Carlo simulations, and scans with multiple or vectorized doses. See SimFunction
object for more examples.

Create a SimFunction Object with Dosing Information

This example creates a SimFunction object with dosing information using a
RepeatDose or ScheduleDose object or a vector of these objects. However, if any dose
object contains data such as StartTime, Amount, and Rate, such data are ignored, and
a warning is issued. Only data, if available, used are TargetName, LagParameterName,
and DurationParameterName of the dose object.



 createSimFunction (model)

2-89

Load the sample project containing the radioactive decay model m1.

sbioloadproject radiodecay;

Create a RepeatDose object and specify its properties.

rdose = sbiodose('rd');

rdose.TargetName = 'x';

rdose.StartTime = 5;

rdose.TimeUnits = 'second';

rdose.Amount = 300;

rdose.AmountUnits = 'molecule';

rdose.Rate = 1;

rdose.RateUnits = 'molecule/second';

rdose.Interval = 100;

rdose.RepeatCount = 2;

Add a lag parameter and duration parameter to the model.

lagPara = addparameter(m1,'lp');

lagPara.Value = 1;

lagPara.ValueUnits = 'second';

duraPara = addparameter(m1,'dp');

duraPara.Value = 1;

duraPara.ValueUnits = 'second';

Set these parameters to the dose object.

rdose.LagParameterName = 'lp';

rdose.DurationParameterName = 'dp';

Create a SimFunction object f using the RepeatDose object rdose that you just
created.

f = createSimFunction(m1,{'Reaction1.c'},{'x','z'},rdose)

Warning: Some Dose objects in DOSED had data. This data

will be ignored. 

> In SimFunction>SimFunction.SimFunction at 847

  In SimFunction>SimFunction.createSimFunction at 374 

f = 

SimFunction

Parameters:



2 Methods — Alphabetical List

2-90

        Name         Value       Type          Units   

    _____________    _____    ___________    __________

    'Reaction1.c'    0.5      'parameter'    '1/second'

Observables: 

    Name      Type         Units   

    ____    _________    __________

    'x'     'species'    'molecule'

    'z'     'species'    'molecule'

Dosed: 

    TargetName            TargetDimension        

    __________    _______________________________

    'x'           'Amount(e.g. mole or molecule)'

    DurationParameterName    DurationParameterValue

    _____________________    ______________________

    'dp'                     1                     

    DurationParameterUnits    LagParameterName

    ______________________    ________________

    'second'                  'lp'            

    LagParameterValue    LagParameterUnits

    _________________    _________________

    1                    'second'         



 createSimFunction (model)

2-91

A warning message appears because the rdose object contains data (StartTime,
Amount, Rate) that are ignored by the createSimFunction method.

Scan Parameters of the Lotka-Volterra Model

This example shows how to execute different signatures of the SimFunction object to
simulate and scan parameters of the Lotka-Volterra (predator-prey) model described by
Gillespie [1].

Load the sample project containing the model m1.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and
y1 and y2 as the output of the function with no dose.

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f = 

SimFunction

Parameters:

         Name         Value       Type    

    ______________    _____    ___________

    'Reaction1.c1'      10     'parameter'

    'Reaction2.c2'    0.01     'parameter'

Observables: 

    Name      Type   

    ____    _________

    'y1'    'species'

    'y2'    'species'

Dosed: None

Define an input matrix that contains values for each parameter (c1 and c2) for each
simulation. The number of rows indicates the total number of simulations, and each
simulation uses the parameter values specified in each row.



2 Methods — Alphabetical List

2-92

phi = [10 0.01; 10 0.02];

Run simulations until the stop time is 5 and plot the simulation results.

sbioplot(f(phi, 5));

You can also specify a vector of different stop times for each simulation.

t_stop = [3;6];

sbioplot(f(phi, t_stop));



 createSimFunction (model)

2-93

Next, specify the output times as a vector.

t_output = 0:0.1:5;

sbioplot(f(phi,[],[],t_output));



2 Methods — Alphabetical List

2-94

Specify output times as a cell array of vectors.

t_output = {0:0.01:3, 0:0.2:6};

sbioplot(f(phi, [], [], t_output));



 createSimFunction (model)

2-95

Calculate Sensitivities Using SimFunctionSensitivity Object

This example shows how to calculate sensitivities of some species in the Lotka-Volterra
model using the SimFunctionSensitivity object.

Load the sample project.

sbioloadproject lotka;

Define the input parameters.

params = {'Reaction1.c1', 'Reaction2.c2'};

Define the observed species, which are the outputs of simulation.



2 Methods — Alphabetical List

2-96

observables  = {'y1', 'y2'};

Create a SimFunctionSensitivity object. Set the sensitivity output factors to all
species (y1 and y2) specified in the observables argument and input factors to those in
the params argument (c1 and c2) by using the keyword 'all'.

f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')

f = 

SimFunction

Parameters:

         Name         Value       Type    

    ______________    _____    ___________

    'Reaction1.c1'      10     'parameter'

    'Reaction2.c2'    0.01     'parameter'

Observables: 

    Name      Type   

    ____    _________

    'y1'    'species'

    'y2'    'species'

Dosed: None

Sensitivity Input Factors: 

         Name            Type    

    ______________    ___________

    'Reaction1.c1'    'parameter'

    'Reaction2.c2'    'parameter'

Sensitivity Output Factors: 

    Name      Type   

    ____    _________

    'y1'    'species'



 createSimFunction (model)

2-97

    'y2'    'species'

Sensitivity Normalization: 

Full

Calculate sensitivities by executing the object with c1 and c2 set to 10 and 0.1
respectively. Set the output times from 1 to 10. t contains time points, y contains
simulation data, and sensMatrix is the sensitivity matrix containing sensitivities of y1
and y2 with respect to c1 and c2.

[t,y,sensMatrix] = f([10,0.1],[],[],1:10);

Retrieve the sensitivity information at simulation time = 5.

temp = sensMatrix{:};

sensMatrix2 = temp(t{:}==5,:,:);

sensMatrix2 = squeeze(sensMatrix2)

sensMatrix2 =

   35.5735   -5.8617

  -39.7255    5.7080

The rows of sensMatrix2 represent output factors (y1 and y2). The columns represent
the input factors (c1 and c2).

Set the stop time to 15, without specifying the output times. In this case, the output
times are the solver time points by default.

sd = f([10,0.1],15);

Retrieve the calculated sensitivities from the SimData object sd.

[t,y,outputs,inputs] = getsensmatrix(sd);

Plot the sensitivities of species y1 and y2 with respect to c1.

figure;



2 Methods — Alphabetical List

2-98

plot(t,y(:,:,1));

legend(outputs);

title('Sensitivites of species y1 and y2 with respect to parameter c1');

xlabel('Time');

ylabel('Sensitivity');

Plot the sensitivities of species y1 and y2 with respect to c2.

figure;

plot(t,y(:,:,2));

legend(outputs);

title('Sensitivites of species y1 and y2 with respect to parameter c2');

xlabel('Time');

ylabel('Sensitivity');



 createSimFunction (model)

2-99

Alternatively, you can use sbioplot. Expand Run1 to select which simulation or
sensitivity data to display.

sbioplot(sd);



2 Methods — Alphabetical List

2-100

You can also plot the sensitivity matrix using the time integral for the calculated
sensitivities of y1 and y2. The plot indicates y1 and y2 are more sensitive to the
parameter c1 than c2.

[~, in, out] = size(y);

result = zeros(in, out);

for i = 1:in

    for j = 1:out

        result(i,j) = trapz(t(:),abs(y(:,i,j)));

    end

end

figure;

hbar = bar(result);

haxes = hbar(1).Parent;



 createSimFunction (model)

2-101

haxes.XTick = 1:length(outputs);

haxes.XTickLabel = outputs;

legend(inputs,'Location','NorthEastOutside');

ylabel('Sensitivity');

References

[1] Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions.
The Journal of Physical Chemistry. 81(25), 2340–2361.

See Also
sbiosampleerror | sbiosampleparameters | SimFunction object |
SimFunctionSensitivity object



2 Methods — Alphabetical List

2-102

delete (any object)
Delete SimBiology object

Syntax

delete(Obj)

Arguments

Obj abstract kinetic law, configuration set, event, kinetic law,
model, parameter, reaction, rule, SimData, species, unit, unit
prefix, or variant object.

Description

delete(Obj) removes an object (Obj) from its parent.

• If Obj is a model object, the model is deleted from the root object. delete removes all
references to the model both at the command line and in the SimBiology desktop.

• If Obj is a species object that is being used by a reaction object, this method returns
an error and the species object is not deleted. You need to delete the reaction or
remove the species from the reaction before you can delete the species object.

• If Obj is a parameter object being used by a kinetic law object, there is no warning
when the object is deleted. However, when you try to simulate your model, a error
occurs because the parameter cannot be found.

• If Obj is a reaction object, this method deletes the object, but the species objects that
were being used by the reaction object are not deleted.

• If Obj is an abstract kinetic law object and there is a kinetic law object referencing it,
this method returns an error.

• If Obj is a SimBiology configuration set object, and it is the active configuration set
object, this method, after deleting the object, makes the default configuration set
object active. Note that you cannot delete the default configuration set.



 delete (any object)

2-103

• You cannot delete the SimBiology root.

You can also delete all model objects from the root with one call to the sbioreset
function.

Examples

Example 1

Delete a reaction from a model. Notice the species objects are not deleted with the
reaction object.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'a -> b');

delete(reactionObj)

Example 2

Delete a single model from the root object.

modelObj1 = sbiomodel('cell');

modelObj2 = sbiomodel('virus');

delete(modelObj2)

See Also

sbiomodel, sbioreset, sbioroot



2 Methods — Alphabetical List

2-104

display (any object)
Display summary of SimBiology object

Syntax

display(Obj)

Arguments

Obj SimBiology object: abstract kinetic law, configuration set,
compartment, event, kinetic law, model, parameter, reaction,
rule, species, or unit.

Description

Display the SimBiology object array. display(Obj) is called for the SimBiology object,
Obj when the semicolon is not used to terminate a statement. The display of Obj gives a
brief summary of the Obj configuration. You can view a complete list of Obj properties
with the command get. You can modify all Obj properties that can be changed, with the
command set.

Examples
  modelObj = sbiomodel('cell')

  reactionObj = addreaction(modelObj, 'A + B -> C') 



 EstimatedInfo object

2-105

EstimatedInfo object
Object containing information about estimated model quantities

Description
The estimatedInfo object contains information about estimated model quantities
(species, parameters, or compartments). Use this object to specify which quantities in a
SimBiology model are estimated, what parameter transforms are used, and optionally,
the initial estimates for these quantities. Use this object to specify what quantities in a
SimBiology model are estimated when using sbiofit or sbiofitmixed.

Construction
estimInfo = estimatedInfo creates an empty estimatedInfo object.

estimInfoArray = estimatedInfo(transformedNames) creates an array of
estimatedInfo objects for quantities specified in transformedNames. The initial
values for these quantities are obtained from the SimBiology model when you run
sbiofit or sbiofitmixed.

estimInfoArray = estimatedInfo( ___ ,'InitialTransformedValue',

itValues) defines the initial transformed values of model quantities specified by
itValues. You cannot specify this name-value pair along with the 'InitialValue'
name-value pair.

estimInfoArray = estimatedInfo( ___ ,'InitialValue',iValues) defines the
initial values of model quantities specified by iValues. You cannot specify this name-
value pair along with the 'InitialTransformedValue' name-value pair.

estimInfoArray = estimatedInfo( ___ ,'Bounds',boundValues) defines the
lower and upper bounds for parameter estimation specified by boundValues. You cannot
specify this name-value pair along with the 'TransformedBounds' name-value pair.
These methods support parameter bounds in sbiofit: lsqcurvefit, lsqnonlin,
fmincon, patternsearch, ga, and particleswarm. However, sbiofitmixed does not
support parameter bounds.

estimInfoArray = estimatedInfo( ___ ,'TransformedBounds',tBoundValues)

defines the transformed bounds for parameter estimation specified by tBoundValues.



2 Methods — Alphabetical List

2-106

You cannot specify this name-value pair along with the 'Bounds' name-value pair.
These methods support parameter bounds in sbiofit: lsqcurvefit, lsqnonlin,
fmincon, patternsearch, ga, and particleswarm. However, sbiofitmixed does not
support parameter bounds.

estimInfoArray = estimatedInfo( ___ ,'CategoryVariableName',groups)

defines which groups in the data have separate estimated values for parameters. In other
words, this allows you to estimate parameter values specific for each group or category.
For example, you can estimate parameters based on individuals’ age or sex.

Input Arguments

transformedNames — Names of estimated model quantities
string | cell array of strings

Names of estimated model quantities, specified as a string or cell array of strings. Each
string must be in one of these formats:

• Name or qualified name of a model quantity, such as 'Cl', 'Reaction1.k','[c
1].[r 1]'

• Name of a supported parameter transform (log, logit, or probit) followed by
a quantity name in parenthesis, such as 'log(Cl)', 'logit(Reaction1.k)',
'probit([c 1].[r 1])'

itValues — Initial transformed values of model quantities
vector | cell array

Initial transformed values of model quantities, specified as a vector or cell array. It must
have the same length as transformedNames. If it is a cell array, each element of the cell
must be a scalar or the empty matrix [].

iValues — Initial values of model quantities
vector | cell array

Initial values of model quantities, specified as a vector or cell array. It must have the
same length as transformedNames. If it is a cell array, each element of the cell must be
a scalar or the empty matrix [].

boundValues — Bound constraints for estimated parameters
[] (default) | matrix | cell array



 EstimatedInfo object

2-107

Bound constraints for estimated parameters, specified as a matrix or cell array. If
boundValues is a matrix, it is a N-by-2 matrix of numbers, where N is either 1 or the
length of transformedNames. If it is a cell array, each element must be a vector of size
1-by-2 or empty [].

Each row of boundValues corresponds to the lower (the first number) and upper (the
second number) bounds of each element (such as a parameter) of estimInfo. If you
specify a single row, these bounds are applied to all elements of estimInfoArray.

You cannot specify this name-value pair along with the 'TransformedBounds' name-
value pair.

tBoundValues — Transformed bound constraints for estimated parameters
[] (default) | matrix | cell array

Transformed bound constraints for estimated parameters, specified as a matrix or cell
array. tBoundValues is a N-by-2 matrix of numbers, where N is either 1 or the length of
transformedNames. If it is a cell array, each element must be a vector of size 1-by-2 or
empty [].

Each row of tBoundValues corresponds to the lower (the first number) and upper (the
second number) bounds of each element (such as a parameter) of estimInfo. If you
specify a single row, the bounds are applied to all elements of estimInfoArray.

You cannot specify this name-value pair along with the 'Bounds' name-value pair.

groups — Group names for estimated parameters
string | cell array

Group names for estimated parameters, specified as a string or cell array of strings. Each
string must be one of the following.

• Name of a variable in the data used for fitting
• '<GroupVariableName>' (default)
• '<None>'

The string '<GroupVariableName>' indicates that each group in the data uses a
separate parameter estimate. The string '<None>' indicates that all groups in the data
use the same parameter estimate.

If the data you plan to use for fitting contains variables that group data into different
categories, you can specify the names of those variables. For instance, if you have a



2 Methods — Alphabetical List

2-108

variable called Sex which indicates male and female individuals, you can specify 'Sex'
as the 'CategoryVariableName'. This means that all male individuals will have one
set of parameter estimates and all females will have a separate set.

Output Arguments

estimInfo — Estimated model quantity
estimatedInfo object

Estimated model quantity, returned as an estimatedInfo object.

estimInfoArray — Estimated model quantities
estimatedInfo object | vector

Estimated model quantities, returned as an estimatedInfo object or vector of
estimatedInfo objects. If transformedNames is a single string, estimInfoArray
is a scalar estimatedInfo object. Otherwise, estimInfoArray is a vector
of estimatedInfo objects with the same length as the input argument
transformedNames.

Properties

Name String indicating the name of an estimated model
quantity. Changing this property also updates the
TransformedName property.

Transform String indicating whether the quantity value is
transformed during estimation. Valid names are '',
'log', 'logit', and 'probit'. An empty string ''
indicates that no transform is applied.

A log transform ensures that the component value is
always positive during estimation. The logit and
probit transforms constrain component values to lie
between 0 and 1.

The probit function is the inverse cumulative
distribution function associated with the standard normal
distribution. For the probit transform, SimBiology uses



 EstimatedInfo object

2-109

the norminv function. Hence Statistics and Machine
Learning Toolbox is required for the transform.

The logit function, which is the inverse of sigmoid
function, is defined as logit(x) = log(x) – log(1 –
x).

TransformedName Read-only string that combines the transform name (such
as 'log') and the quantity name (such as 'Central')
into an expression (such as 'log(Central)').

InitialValue Empty matrix [] or real, finite, scalar value specifying
the initial values of model quantities used for estimation.
The empty matrix indicates that the initial values for
estimation are obtained from the relevant quantity
property (Value for parameters, InitialAmount for
species, and Capacity for compartments).

Changing this property automatically updates the
InitialTransformedValue property of corresponding
model quantities.

InitialTransformedValue Empty matrix [] or scalar value specifying the initial
transformed values of model quantities used for
estimation. The empty matrix indicates that the initial
transformed values for estimation are obtained by
transforming the relevant quantity property (Value for
parameters, InitialAmount for species, and Capacity
for compartments).

Changing this property automatically updates the
InitialValue property of corresponding model
quantities.

Bounds Empty matrix [] or 1-by-2 vector of real, finite
value specifying the lower and upper bound for an
estimated parameter. The empty matrix [] indicates
that the only bound constraints are those introduced
by the value of Transform. For example, setting
Transform to 'log' constrains the parameter to the
range [0,inf]. Changing this property also updates
TransformedBounds.



2 Methods — Alphabetical List

2-110

TransformedBounds Empty matrix [] or 1-by-2 vector of real, finite value
specifying the lower and upper bound for an estimated
parameter. The empty matrix [] indicates that the value
of the parameter in transformed space is not constrained.
Changing this property also updates Bounds.

CategoryVariableName String or cell array of strings specifying which groups
in the data have separate estimated values for the
parameter. The string can be the name of a variable
in the data used for fitting or one of the keywords:
'<GroupVariableName>' or '<None>'.

The string '<GroupVariableName>' indicates that each
group in the data uses a separate parameter estimate.
The string '<None>' indicates that all groups in the data
use the same parameter estimate.

If you specify 'Pooled' name-value pair argument (to
either true or false) when you run sbiofit , then the
function ignores this variable. sbiofitmixed always
ignores this property.

Examples

Specify Estimated Parameters Using an EstimatedInfo Object

Create a one-compartment PK model with bolus dosing and linear clearance.

pkmd                    = PKModelDesign;

pkc1                    = addCompartment(pkmd,'Central');

pkc1.DosingType         = 'Bolus';

pkc1.EliminationType    = 'linear-clearance';

pkc1.HasResponseVariable = true;

Suppose you want to estimate the volume of the central compartment (Central).
You can specify such estimated model quantity as well as appropriate parameter
transform (log transform in this example), initial value, and parameter bound using the
estimatedInfo object.

estimated = estimatedInfo('log(Central)','InitialValue', 1,'Bounds',[0 10])



 EstimatedInfo object

2-111

estimated = 

  estimatedInfo with properties:

                       Name: 'Central'

                  Transform: 'log'

            TransformedName: 'log(Central)'

               InitialValue: 1

    InitialTransformedValue: 0

                     Bounds: [0 10]

          TransformedBounds: [-Inf 2.3026]

       CategoryVariableName: '<GroupVariableName>'

Fit a One-Compartment Model to an Individual's PK Profile

Background

This example shows how to fit an individual's PK profile data to one-compartment model
and estimate pharmacokinetic parameters.

Suppose you have drug plasma concentration data from an individual and want to
estimate the volume of the central compartment and the clearance. Assume the drug
concentration versus the time profile follows the monoexponential decline ,
where  is the drug concentration at time t,  is the initial concentration, and  is
the elimination rate constant that depends on the clearance and volume of the central
compartment .

The synthetic data in this example was generated using the following model and
parameters:

• One-compartment model with bolus dosing and first-order elimination
• Volume of the central compartment (Central) = 1.70 liter
• Clearance parameter (Cl_Central) = 0.55 liter/hour
• Constant error model

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time
course of the plasma concentration of an individual after an intravenous bolus
administration measured at 13 different time points. The variable units for Time and
Conc are hour and milligram/liter, respectively.



2 Methods — Alphabetical List

2-112

clear all

load(fullfile(matlabroot,'examples','simbio','data15.mat'))

plot(data.Time,data.Conc,'b+')

xlabel('Time');

ylabel('Drug Concentration');

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for
the fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the Time
and Conc variables. The units are optional and only required for the UnitConversion



 EstimatedInfo object

2-113

feature, which automatically converts matching physical quantities to one consistent unit
system.

gData = groupedData(data);

gData.Properties.VariableUnits = {'hour','milligram/liter'};

gData.Properties

groupedData automatically set the name of the IndependentVariableName property
to the Time variable of the data.

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {'hour'  'milligram/liter'}

             DimensionNames: {'Row'  'Variable'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'Time'  'Conc'}

          GroupVariableName: ''

    IndependentVariableName: 'Time'

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and
first-order elimination where the elimination rate depends on the clearance and volume
of the central compartment. Use the configset object to turn on unit conversion.

pkmd                    = PKModelDesign;

pkc1                    = addCompartment(pkmd,'Central');

pkc1.DosingType         = 'Bolus';

pkc1.EliminationType    = 'linear-clearance';

pkc1.HasResponseVariable = true;

model                   = construct(pkmd);

configset               = getconfigset(model);

configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models”.



2 Methods — Alphabetical List

2-114

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up
different dosing schedules, see “Doses”.

dose                = sbiodose('dose');

dose.TargetName     = 'Drug_Central';

dose.StartTime      = 0;

dose.Amount         = 10;

dose.AmountUnits    = 'milligram';

dose.TimeUnits      = 'hour';

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data
corresponds to the Drug_Central species in the model. Therefore, map the data to
Drug_Central as follows.

responseMap = {'Drug_Central = Conc'};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central)
and the clearance rate (Cl_Central). In this case, specify log-transformation for these
biological parameters since they are constrained to be positive. The estimatedInfo
object lets you specify parameter transforms, initial values, and parameter bounds
(optional).

paramsToEstimate    = {'log(Central)','log(Cl_Central)'};

estimatedParams     = estimatedInfo(paramsToEstimate,'InitialValue',[1 1]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response
data, parameters to estimate, and dosing, use sbiofit to estimate parameters.
The default estimation function that sbiofit uses will change depending on which
toolboxes are available. To see which function was used during fitting, check the
EstimationFunction property of the corresponding results object.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);



 EstimatedInfo object

2-115

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that
were used to generate the data. You may also try different error models to see if they
could further improve the parameter estimates.

fitConst.ParameterEstimates

plot(fitConst);

ans = 

        Name        Estimate    StandardError

    ____________    ________    _____________

    'Central'        1.6993     0.034821     

    'Cl_Central'    0.53358      0.01968     



2 Methods — Alphabetical List

2-116

Use Different Error Models

Try three other supported error models (proportional, combination of constant and
proportional error models, and exponential).

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...

                      'ErrorModel','proportional');

fitExp  = sbiofit(model,gData,responseMap,estimatedParams,dose,...

                      'ErrorModel','exponential');

fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...

                      'ErrorModel','combined');



 EstimatedInfo object

2-117

Compare Information Criteria for Model Selection

Compare the loglikelihood, AIC, and BIC values of each model to see which eror model
best fits the data. A larger likelihood value indicates the corresponding model fits the
model better. For AIC and BIC, the smaller values are better.

allResults = [fitConst,fitProp,fitExp,fitComb];

Error_Model = cell(4,1);

LogLikelihood = zeros(4,1);

AIC = zeros(4,1);

BIC = zeros(4,1);

t = table(Error_Model,LogLikelihood,AIC,BIC);

for i = 1:height(t)

    t{i,1} = {allResults(i).ErrorModelInfo.ErrorModel};

    t{i,2} = allResults(i).LogLikelihood;

    t{i,3} = allResults(i).AIC;

    t{i,4} = allResults(i).BIC;

end

t

t = 

     Error_Model      LogLikelihood      AIC        BIC  

    ______________    _____________    _______    _______

    [constant    ]     3.9866          -3.9732    -2.8433

    [proportional]    -3.8257           11.651     12.781

    [exponential ]     1.1984           1.6032     2.7331

    [combined    ]     3.9123          -3.8246    -2.6947

Based on the information criteria, the constant error model fits the data best since it has
the largest loglikelihood value and the smallest AIC and BIC.

Display Estimated Parameter Values

Show the estimated parameter values of each error model.

allResults              = [fitConst,fitProp,fitExp,fitComb];

Error_Model             = cell(4,1);

Estimated_Central       = zeros(4,1);

Estimated_Cl_Central    = zeros(4,1);

t = table(Error_Model,Estimated_Central,Estimated_Cl_Central);

for i = 1:height(t)



2 Methods — Alphabetical List

2-118

    t{i,1} = {allResults(i).ErrorModelInfo.ErrorModel};

    t{i,2} = allResults(i).ParameterEstimates.Estimate(1);

    t{i,3} = allResults(i).ParameterEstimates.Estimate(2);

end

t

t = 

     Error_Model      Estimated_Central    Estimated_Cl_Central

    ______________    _________________    ____________________

    [constant    ]    1.6993               0.53358             

    [proportional]    1.8774               0.51145             

    [exponential ]    1.7872               0.51701             

    [combined    ]       1.7                0.5326             

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central
compartment and clearance parameter of an individual, by fitting the PK profile data
to one-compartment model. You compared the information criteria of each model and
estimated parameter values of different error models to see which model best explained
the data. Final fitted results suggested both the constant and combined error models
provided the closest estimates to the parameter values used to generate the data.
However, the constant error model is a better model as indicated by the loglikelihood,
AIC, and BIC information criteria.

Estimate Category-Specific PK Parameters for Multiple Individuals

This example shows how to estimate category-specific (such as young versus old, male
versus female), individual-specific, and population-wide parameters using PK profile
data from multiple individuals.

Background

Suppose you have drug plasma concentration data from 30 individuals and want
to estimate pharmacokinetic parameters, namely the volumes of central and
peripheral compartment, the clearance, and intercompartmental clearance. Assume
the drug concentration versus the time profile follows the biexponential decline

, where  is the drug concentration at time t, and  and  are slopes
for corresponding exponential declines.



 EstimatedInfo object

2-119

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals
after a bolus dose (100 mg) measured at different times for both central and peripheral
compartments. It also contains categorical variables, namely Sex and Age.

clear

load(fullfile(matlabroot,'examples','simbio','sd5_302RAgeSex.mat'))

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for
the fitting function sbiofit. A groupedData object also allows you set independent
variable and group variable names (if they exist). Set the units of the ID, Time,
CentralConc, PeripheralConc, Age, and Sex variables. The units are optional and
only required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

gData = groupedData(data);

gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};

gData.Properties

The IndependentVariableName and GroupVariableName properties have been
automatically set to the Time and ID variables of the data.

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {1x6 cell}

             DimensionNames: {'Row'  'Variable'}

                   UserData: []

                   RowNames: {}

              VariableNames: {1x6 cell}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'

Visualize Data

Display the response data for each individual.

sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'});



2 Methods — Alphabetical List

2-120

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion
dosing and first-order elimination where the elimination rate depends on the clearance
and volume of the central compartment. Use the configset object to turn on unit
conversion.

pkmd                                    = PKModelDesign;

pkc1                                    = addCompartment(pkmd,'Central');

pkc1.DosingType                         = 'Bolus';

pkc1.EliminationType                    = 'linear-clearance';

pkc1.HasResponseVariable                = true;

pkc2                                    = addCompartment(pkmd,'Peripheral');



 EstimatedInfo object

2-121

model                                   = construct(pkmd);

configset                               = getconfigset(model);

configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models”.

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on
setting up different dosing strategies, see “Doses”.

dose             = sbiodose('dose','TargetName','Drug_Central');

dose.StartTime   = 0;

dose.Amount      = 100;

dose.AmountUnits = 'milligram';

dose.TimeUnits   = 'hour';

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral
compartments. Map these variables to the appropriate model components, which are
Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to
estimate. The estimatedInfo object lets you optionally specify parameter transforms,
initial values, and parameter bounds. Since both Central and Peripheral are
constrained to be positive, specify a log-transform for each parameter.

paramsToEstimate    = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};

estimatedParam      = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the 'Pooled' name-value
pair argument to false.

unpooledFit =  sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);



2 Methods — Alphabetical List

2-122

Display Results

Plot the fitted results versus the original data for each individual (group).

plot(unpooledFit);

For an unpooled fit, sbiofit always returns one results object for each individual.

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that
is, if some parameters are related to one or more categories. If there are any category



 EstimatedInfo object

2-123

dependencies, it might be possible to reduce the number of degrees of freedom by
estimating just category-specific values for those parameters.

First extract the ID and category values for each ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

Add variables to the table containing each parameter's estimate.

allParamValues            = vertcat(unpooledFit.ParameterEstimates);

catParamValues.Central    = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));

catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));

catParamValues.Q12        = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));

catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Plot estimates of each parameter for each category. gscatter requires Statistics
and Machine Learning Toolbox™. If you do not have it, use other alternative plotting
functions such as plot.

h           = figure;

ylabels     = {'Central','Peripheral','Cl\_Central','Q12'};

plotNumber  = 1;

for i = 1:4

    thisParam = estimatedParam(i).Name;

    % Plot for Sex category

    subplot(4,2,plotNumber);

    plotNumber  = plotNumber + 1;

    gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);

    ax          = gca;

    ax.XTick    = [];

    ylabel(ylabels(i));

    % Plot for Age category

    subplot(4,2,plotNumber);

    plotNumber  = plotNumber + 1;

    gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);

    ax          = gca;

    ax.XTick    = [];

    ylabel(ylabels(i));

end

Based on the plot, it seems that young individuals tend to have higher volumes of central
and peripheral compartments (Central, Peripheral) than old invididuals (that is,



2 Methods — Alphabetical List

2-124

the volumes seem to be age-specific). In addition, males tend to have lower clearance
rates (Cl_Central) than females but the opposite for the Q12 parameter (that is, the
clearance and Q12 seem to be sex-specific).

Estimate Category-Specific Parameters

Use the 'CategoryVariableName' property of the estimatedInfo object to specify
which category to use during fitting. Use 'Sex' as the group to fit for the clearrance
Cl_Central and Q12 parameters. Use 'Age' as the group to fit for the Central and
Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';

estimatedParam(2).CategoryVariableName = 'Age';



 EstimatedInfo object

2-125

estimatedParam(3).CategoryVariableName = 'Sex';

estimatedParam(4).CategoryVariableName = 'Sex';

categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)

When fitting by category (or group), sbiofit always returns one results object, not one
for each category level. This is because both male and female individuals are considered
to be part of the same optimization using the same error model and error parameters,
similarly for the young and old individuals.

categoryFit = 

  OptimResults with properties:

                   ExitFlag: 3

                     Output: [1x1 struct]

                  GroupName: []

                       Beta: [8x5 table]

         ParameterEstimates: [120x6 table]

                          J: [240x8x2 double]

                       COVB: [8x8 double]

           CovarianceMatrix: [8x8 double]

                          R: [240x2 double]

                        MSE: 0.4365

                        SSE: 206.0170

                    Weights: []

              LogLikelihood: -478.0919

                        AIC: 972.1837

                        BIC: 1.0056e+03

                        DFE: 472

    EstimatedParameterNames: {'Central'  'Peripheral'  'Q12'  'Cl_Central'}

             ErrorModelInfo: [1x3 table]

         EstimationFunction: 'lsqnonlin'

Plot Results

Plot the category-specific estimated results.

plot(categoryFit);

For the Cl_Central and Q12 parameters, all males had the same estimates, and
similarly for the females. For the Central and Peripheral parameters, all young
individuals had the same estimates, and similarly for the old individuals.



2 Methods — Alphabetical List

2-126

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is,
estimate one set of parameters for all individuals by setting the 'Pooled' name-value
pair argument to true. The warning message tells you that this option will ignore any
category-specific information (if they exist).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Warning: You called SBIOFIT using the Pooled option. The CategoryVariableName

values of the ESTIMINFO input will be ignored. 



 EstimatedInfo object

2-127

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated
for each individual, the data was fitted using the same set of parameters (that is, all
individuals had the same fitted line).

plot(pooledFit);

Compare Residuals

Compare residuals of CentralConc and PeripheralConc responses for each fit.

t = gData.Time;



2 Methods — Alphabetical List

2-128

allResid(:,:,1) = pooledFit.R;

allResid(:,:,2) = categoryFit.R;

allResid(:,:,3) = vertcat(unpooledFit.R);

figure;

responseList = {'CentralConc', 'PeripheralConc'};

for i = 1:2

    subplot(2,1,i);

    oneResid = squeeze(allResid(:,i,:));

    plot(t,oneResid,'o');

    refline(0,0); % A reference line representing a zero residual

    title(sprintf('Residuals (%s)', responseList{i}));

    xlabel('Time');

    ylabel('Residuals');

    legend({'Pooled','Category-Specific','Unpooled'});

end

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to
each indivdual. This was expected since it used the most number of degrees of freedom.
The category-fit reduced the number of degrees of freedom by fitting the data to two
categories (sex and age). As a result, the residuals were larger than the unpooled fit,
but still smaller than the population-fit, which estimated just one set of parameters for
all individuals. The category-fit might be a good compromise between the unpooled and
pooled fitting provided that any hierarchical model exists within your data.



 EstimatedInfo object

2-129

• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 1-68
• “Estimate a Parameter from the Yeast G protein Model” on page 1-87

See Also
CovariateModel object | groupedData object | sbiofit | sbiofitmixed



2 Methods — Alphabetical List

2-130

Event object

Store event information

Description

Events are used to describe sudden changes in model behavior. An event lets you
specify discrete transitions in model component values that occur when a user-specified
condition become true. You can specify that the event occurs at a particular time, or
specify a time-independent condition.

For details on how events are handled during a simulation, see “Event Object”.

See “Property Summary” on page 2-131 for links to event property reference pages.

Properties define the characteristics of an object. For example, an event object includes
properties that allow you to specify the conditions to trigger an event (Trigger), and
what to do after the event is triggered (EventFcn). Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the SimBiology desktop.

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger x > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does
not have to have the same unit as the constant x0, but must be dimensionally consistent
with it. For example, the unit of x can be picomole/liter instead of mole/liter.

Constructor Summary

addevent (model) Add event object to model object



 Event object

2-131

Method Summary

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
set (any object) Set object properties

Property Summary

See Also

AbstractKineticLaw object, Configset object, KineticLaw object, Model
object, Parameter object, Reaction object, Root object, Rule object,
Species object



2 Methods — Alphabetical List

2-132

export (model)

Export SimBiology models for deployment and standalone applications

Syntax

exportedModel = export(model)

exportedModel = export(model,editobjs)

exportedModel = export(model,editobjs,modifiers)

exportedModel = export(model,editobjs,editdoses,variants)

Description

exportedModel = export(model) returns a SimBiology.export.Model object,
exportedModel, from a SimBiology model object, model including all doses which are
editable in the exported model. In addition, if the model has any active variants, they are
automatically applied to determine the default initial values in the exported model. By
default, all species, parameters, compartments, and doses are editable in the exported
model. When you simulate the exported model, you can specify different initial values or
different dose conditions.

exportedModel = export(model,editobjs) specifies editobjs, which is a species,
parameter, compartment, or vector of these objects that are editable in the exported
model. All doses are exported and are editable in the exported model. If the model has
any active variants, they are automatically applied to determine the default initial values
in the exported model. When you simulate the exported model, you can specify different
initial values for editobjs or different dose conditions.

exportedModel = export(model,editobjs,modifiers) additionally specifies
modifiers which is a dose, variant, vector of these objects or an empty array [].

exportedModel = export(model,editobjs,editdoses,variants) additionally
specifies editdoses, a dose object or vector of dose objects and variants, a variant
object or vector of variant objects.



 export (model)

2-133

Method Summary

Methods for exported model objects

accelerate Prepare exported SimBiology model for
acceleration

getdose Return exported SimBiology model dose
object

getIndex Get indices into ValueInfo and
InitialValues properties

isAccelerated Determine whether an exported SimBiology
model is accelerated

simulate Simulate exported SimBiology model

Input Arguments

model — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

editobjs — Editable model quantities in the exported model
species object | parameter object | compartment object | vector of objects

Editable model quantities in the exported model, specified as a species, parameter, or
compartment object or a vector of these objects.

modifiers — Model modifiers
dose object | variant object | vector of objects | []

Model modifiers, specified as a dose or variant object, a vector of these objects, or an
empty array [].

If modifiers is a vector of dose objects, then only these doses are editable in the
exported model.

If modifiers is an empty array [], then no doses are editable in the exported model,
and all active variants are applied to determine the default initial values of model
quantities in the exported model.



2 Methods — Alphabetical List

2-134

If modifiers is a vector of variant objects, then specified variants are applied to
determine the default initial values. All doses in the model are exported.

When you simulate the exported model, you can specify different initial values for
editobjs or different dose conditions for editable doses.

editdoses — Editable doses
dose object | vector of objects

Editable doses, specified as a dose object or vector of dose objects. The specified dose
objects are editable in the exported model.

variants — Variants
variant object | vector of objects

Variants, specified as a variant object or a vector of objects. The specified variant objects
are applied to determine the default initial values in the exported model.

Output Arguments

exportedModel — Exported model
SimBiology.export.Model

Exported model, specified as a SimBiology.export.Model object.

Examples

Export a SimBiology Model

Export a SimBiology model object.

modelObj = sbmlimport('lotka');

exportedModel = export(modelObj)

exportedModel = 

  Model with properties:

           Name: 'lotka'

     ExportTime: '14-Mar-2013 09:41:31'



 export (model)

2-135

    ExportNotes: ''  

Display the editable values (compartments, species, and parameters) information for the
exported model object.

{exportedModel.ValueInfo.Name}

ans = 

    'unnamed'    'x'    'y1'    'y2'    'z'    'c1'    'c2'    'c3'

There are 8 editable values in the exported model. Export the model again, allowing only
the parameters (c1, c2, and c3) to be editable.

parameters = sbioselect(modelObj,'Type','parameter');

exportedModelParam = export(modelObj,parameters);

{exportedModelParam.ValueInfo.Name}

ans = 

    'c1'    'c2'    'c3'

Export the model a third time, allowing the parameters and species to be editable.

PS = sbioselect(modelObj,'Type',{'species','parameter'});

exportedModelPS = export(modelObj,PS);

{exportedModelPS.ValueInfo.Name}

ans = 

    'x'    'y1'    'y2'    'z'    'c1'    'c2'    'c3'

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
SimBiology.export.Model | Compartment object | Parameter object | Species
object



2 Methods — Alphabetical List

2-136

fitted(LeastSquaresResults,OptimResults,NLINResults)

Return simulation results of SimBiology model fitted using least-squares regression

Syntax

[yfit,parameterEstimates] = fitted(resultsObj)

Description

[yfit,parameterEstimates] = fitted(resultsObj) returns simulation results
yfit and parameter estimates parameterEstimates from a fitted SimBiology model.

Tip Use this method to retrieve simulation results from the fitted model if you did not
specify the second optional output argument that corresponds to simulation results when
you first ran sbiofit.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object, NLINResults object, or
vector of results objects which contains estimation results from running sbiofit.

Output Arguments

yfit — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in yfit
are the states that were included in the responseMap input argument of sbiofit as



 fitted(LeastSquaresResults,OptimResults,NLINResults)

2-137

well as any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This argument is identical to the
resultsObj.ParameterEstimates property.

Examples

Estimate a Parameter from the Yeast G Protein Model

This example uses the yeast heterotrimeric G protein model and experimental data
reported by [1]. For more background information and details about the model, see the
Background section in “Parameter Scanning, Parameter Estimation, and Sensitivity
Analysis in the Yeast Heterotrimeric G Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G
protein, as reported in the reference paper [1].

time = [0 10 30 60 110 210 300 450 600]';

GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);

grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate
which species in the model corresponds to which response variable in the data. In
this example, map the model parameter GaFrac to the experimental data variable
GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be
estimated.



2 Methods — Alphabetical List

2-138

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam);

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans = 

    Name     Estimate    StandardError

    _____    ________    _____________

    'kGd'    0.11        0.00037969   

Suppose you want to plot the model simulation results using the estimated parameter
value. You can either rerun the sbiofit function and specify to return the optional
second output argument, which contains simulation results, or use the fitted method to
retrieve the results without rerunning sbiofit.

[yfit,paramEstim] = fitted(fitResult);

Plot the simulation results.

sbioplot(yfit)



 fitted(LeastSquaresResults,OptimResults,NLINResults)

2-139

References

[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-140

fitted(NLMEResults)

Return the simulation results of a fitted nonlinear mixed-effects model

Syntax

[yfit,parameterEstimates]= fitted(resultsObj)

[yfit,parameterEstimates]= fitted(resultsObj,'ParameterType',value)

Description

[yfit,parameterEstimates]= fitted(resultsObj) returns simulation results
yfit and parameter estimates parameterEstimates from a fitted nonlinear mixed-
effect model.

[yfit,parameterEstimates]= fitted(resultsObj,'ParameterType',value)

returns simulation results that are simulated using either individual or population
parameter estimates. The two choices for value are 'population' or 'individual'
(default).

Tip Use this method to retrieve simulation results from the fitted model if you did not
specify the second or third optional output argument that corresponds to simulation
results when you first ran sbiofitmixed.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results returned by sbiofitmixed.

value — Parameter type
string



 fitted(NLMEResults)

2-141

Parameter type, specified as 'population' or 'individual' (default). If
'population', the method returns the model simulation results using the population
parameter estimates. If 'individual', it returns simulation results using the
individual-specific parameter estimates.

Output Arguments

yfit — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in yfit
are the states that were included in the responseMap input argument of sbiofitmixed
as well as any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This is identical to
resultsObj.IndividualParameterEstimates property when the value argument
is 'individual' or resultsObj.PopulationParameterEstimates property when
the value is 'population'.

See Also
NLMEResults object | sbiofitmixed



2 Methods — Alphabetical List

2-142

get (any object)
Get object properties

Syntax

PropertyValue = get(Obj, 'PropertyName')

objProperties = get(Obj)

Arguments

PropertyValue Value defined for 'PropertyName'
Obj Abstract kinetic law, compartment, configuration set, event,

kinetic law, model, parameter, PKCompartment, PKData,
PKModelDesign PKModelMap, reaction, rule, SimData, species,
or variant object.

'PropertyName' Name of the property to get.
objProperties Struct containing properties and values for the object, Obj.

Description

PropertyValue = get(Obj, 'PropertyName') gets the value 'PropertyValue' of
the object, Obj's PropertyName property.

objProperties = get(Obj) gets the properties for the object, Obj, and returns it to
objProperties.

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add parameter object.



 get (any object)

2-143

parameterObj = addparameter (modelObj, 'kf');

3 Set the ConstantValue property of the parameter object to false and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);

get(parameterObj, 'ConstantValue')

MATLAB returns

ans =

     0

See Also

getadjacencymatrix, getconfigset, getdata, getparameters, getsensmatrix,
getspecies, getstoichmatrix, set



2 Methods — Alphabetical List

2-144

getadjacencymatrix (model)
Get adjacency matrix from model object

Syntax

M = getadjacencymatrix(modelObj)

[M, Headings] = getadjacencymatrix(modelObj)

[M, Headings, Mask] = getadjacencymatrix(modelObj)

Arguments

M Adjacency matrix for modelObj.
modelObj Specify the model object.
Headings Return row and column headings.

If species are in multiple compartments, species names
are qualified with the compartment name in the form
compartmentName.speciesName. For example,
nucleus.DNA, cytoplasm.mRNA.

Mask Return 1 for the species object and 0 for the reaction object to
Mask.

Description

getadjacencymatrix returns the adjacency matrix for a model object.

M = getadjacencymatrix(modelObj) returns an adjacency matrix for the model
object (modelOBJ) to M.

An adjacency matrix is defined by listing all species contained by modelObj and all
reactions contained by modelObj column-wise and row-wise in a matrix. The reactants
of the reactions are represented in the matrix with a 1 at the location of [row of species,
column of reaction]. The products of the reactions are represented in the matrix with a 1



 getadjacencymatrix (model)

2-145

at the location of [row of reaction, column of species]. All other locations in the matrix are
0.

[M, Headings] = getadjacencymatrix(modelObj) returns the adjacency matrix
to M and the row and column headings to Headings. Headings is defined by listing all
Name property values of species contained by modelObj and all Name property values of
reactions contained by modelObj.

[M, Headings, Mask] = getadjacencymatrix(modelObj) returns an array of 1s
and 0s to Mask, where a 1 represents a species object and a 0 represents a reaction object.

Examples

1 Read inm1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');

2 Get the adjacency matrix for m1:

[M, Headings] = getadjacencymatrix(m1)

See Also

getstoichmatrix



2 Methods — Alphabetical List

2-146

getconfigset (model)

Get configuration set object from model object

Syntax

configsetObj = getconfigset(modelObj, 'NameValue')

configsetObj = getconfigset(modelObj)

configsetObj = getconfigset(modelObj,'active')

Arguments

modelObj Model object. Enter a variable name for a model object.
NameValue Name of the configset object.
configsetObj Object holding the simulation-specific information.

Description

configsetObj = getconfigset(modelObj, 'NameValue') returns the
configuration set attached to modelObj that is named NameValue, to configsetObj.

configsetObj = getconfigset(modelObj) returns a vector of all attached
configuration sets, to configsetObj.

configsetObj = getconfigset(modelObj,'active') retrieves the active
configuration set.

A configuration set object stores simulation-specific information. A SimBiology model
can contain multiple configsets with one being active at any given time. The active
configuration set contains the settings that are used during the simulation.

Use the setactiveconfigset function to define the active configset. modelObj
always contains at least one configset object with the name configured to



 getconfigset (model)

2-147

'default'. Additional configset objects can be added to modelObj with the method
addconfigset.

Examples

1 Retrieve the default configset object from the modelObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj)

   Configuration Settings - default (active)

     SolverType:                  ode15s

     StopTime:                    10

   SolverOptions:

     AbsoluteTolerance:           1.000000e-06 

     RelativeTolerance:           1.000000e-03 

     SensitivityAnalysis:         false

   RuntimeOptions:

     StatesToLog:                 all

   CompileOptions:

     UnitConversion:              false

     DimensionalAnalysis:         true

   SensitivityAnalysisOptions:

     Inputs:                      0

     Outputs:                     0

2 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa')

get(configsetObj)

                        Active: 1

                CompileOptions: [1x1 SimBiology.CompileOptions]

                          Name: 'default'

                         Notes: ''

                RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

    SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]

                 SolverOptions: [1x1 SimBiology.SSASolverOptions]

                    SolverType: 'ssa'



2 Methods — Alphabetical List

2-148

                      StopTime: 10

           MaximumNumberOfLogs: Inf

              MaximumWallClock: Inf

                     TimeUnits: 'second'

                          Type: 'configset'

See Also

addconfigset, removeconfigset, setactiveconfigset



 getCovariateData (pkdata)

2-149

getCovariateData (pkdata)
Create design matrix needed for fit

Syntax

CovData = getCovariateData(PKDataObj)

Description

CovData = getCovariateData(PKDataObj) creates CovData, a dataset array
containing only the covariate data from the data set in PKDataObj, a PKData object.
CovData contains one row for each individual and one column for each covariate.

Tip Use the getCovariateData method to view the covariate data when writing
equations for the Expression (CovariateModel) property of a CovariateModel
object object.

More About
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”

See Also
PKData object | CovariateModel object | Expression (CovariateModel)



2 Methods — Alphabetical List

2-150

getdata (SimData)
Get data from SimData object array

Syntax

[t, x, names] = getdata(simDataObj)

[Out] = getdata(simDataObj, 'FormatValue')

Arguments

Output Arguments

t An n-by-1 vector of time points.
x An n-by-m data array. t and names label the rows and columns of x

respectively.
names An m-by-1 cell array of names.
Metadata When used with the 'nummetadata' input argument, Metadata

contains a cell array of metadata structures. The elements of
Metadata label the columns of x.

Out Data returned in the format specified in 'FormatValue', shown
in “Input Arguments” on page 2-150. Depending on the specified
'FormatValue', Out contains one of the following:

• Structure array
• SimData object
• Time series object
• Combined time series object from an array of SimData objects

Input Arguments

simDataObj SimData object. Enter a variable name for a SimData object.
FormatValue Choose a format from the following table.



 getdata (SimData)

2-151

FormatValue Description

'num' Specifies the format that lets you return
data in numeric arrays. This is the default
when getdata is called with multiple
output arguments.

'nummetadata' Specifies the format that lets you return
a cell array of metadata structures in
metadata instead of names. The elements
of metadata label the columns of x.

'numqualnames' Specifies the format that lets you return
qualified names in names to resolve
ambiguities.

'struct' Specifies the format that lets you return
a structure array holding both data and
metadata. This is the default when you use
a single output argument.

'simdata' Specifies the format that lets you return
data in a new SimData object. This format
is more useful for SimData methods other
than getdata.

'ts' Specifies the format that lets you return
data in time series objects, creating
an individual time series for each
state or column and SimData object in
simDataObj.

'tslumped' Specifies the format that lets you return
data in time series objects, combining data
from each SimData object into a single time
series.

Description

[t, x, names] = getdata(simDataObj) gets simulation time and state data
from the SimData object simDataObj. When simDataObj contains more than one
element, the outputs t, x, names are cell arrays in which each cell contains data for
the corresponding element of simDataObj.



2 Methods — Alphabetical List

2-152

[Out] = getdata(simDataObj, 'FormatValue') returns the data in the specified
format. Valid formats are listed in “Input Arguments” on page 2-150.

Examples

Simulating and Retrieving Data

1 The project file, radiodecay.sbproj, contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace and simulate the model.

sbioloadproject('radiodecay');

simDataObj = sbiosimulate(m1);

2 Get all the simulation data from the SimData object.

[t x names] = getdata(simDataObj);

Retrieving Data for Ensemble Runs

1 The project file, radiodecay.sbproj, contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay');

2 Change the solver to use during the simulation and perform an ensemble run.

csObj  = getconfigset(m1);

set(csObj, 'SolverType', 'ssa');

simDataObj = sbioensemblerun(m1, 10);

3 Get all the simulation data from the SimData object.

tsObjs = getdata(simDataObj(1:5), 'ts');

See Also

display, get, resample, select, selectbyname, setactiveconfigset

MATLAB function struct



 getdose

2-153

getdose
Class: SimBiology.export.Model

Return exported SimBiology model dose object

Syntax

doses = getdose(model)

doses = getdose(model,doseName)

Description

doses = getdose(model) returns all the SimBiology.export.Dose objects associated
with the exported model.

doses = getdose(model,doseName) returns the export dose object with the Name
property matching doseName.

Input Arguments

model

SimBiology.export.Model object.

doseName

String containing a dose name to match against the Name property of the export dose
objects in model.

Default: All dose objects.

Output Arguments

doses

Export dose objects in model, or the export dose object with Name property doseName.



2 Methods — Alphabetical List

2-154

Examples

Retrieve SimBiology Model Dose Objects

Open a sample SimBiology model project, and export the included model object.

sbioloadproject('AntibacterialPKPD')

em = export(m1);

Display the editable doses in the exported model object.

doses = getdose(em)

doses = 

  1x4 RepeatDose array with properties:

    Interval

    RepeatCount

    StartTime

    TimeUnits

    Amount

    AmountUnits

    DurationParameterName

    LagParameterName

    Name

    Notes

    Parent

    Rate

    RateUnits

    TargetName

The exported model has 4 repeated dose objects. Display the dose names.

{doses.Name}

ans = 

    '250 mg bid'    '250 mg tid'    '500 mg bid'    '500 mg tid'

Extract only the 3rd dose object from the exported model object.

dose3 = getdose(em,'500 mg bid')

dose3 = 



 getdose

2-155

  RepeatDose with properties:

                 Interval: 12

              RepeatCount: 27

                StartTime: 0

                TimeUnits: 'hour'

                   Amount: 500

              AmountUnits: 'milligram'

    DurationParameterName: 'TDose'

         LagParameterName: ''

                     Name: '500 mg bid'

                    Notes: ''

                   Parent: 'Antibacterial'

                     Rate: 0

                RateUnits: ''

               TargetName: 'Central.Drug'

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
export | SimBiology.export.Dose | SimBiology.export.Model



2 Methods — Alphabetical List

2-156

getdose (model)
Return SimBiology dose object

Syntax

doseObj = getdose(modelObj)

doseObj = getdose(modelObj, 'DoseName')

Arguments

modelObj Selects a model object that contains a dose object.
DoseName Name of a dose object contained in a model object.

DoseName is from the dose object property, Name.

Outputs

doseObj ScheduleDose or RepeatDose object retrieved from a
model object. A RepeatDose or ScheduleDose object
defines an increase (dose) to a species amount during a
simulation.

Description

doseObj = getdose(modelObj) returns a Simbiology dose object (doseObj) contained
in a Simbiology model object (modelObj).

doseObj = getdose(modelObj, 'DoseName') returns a SimBiology dose object
(modelObj) with the name DoseName.

Examples

Get a dose object from a model object.



 getdose (model)

2-157

1 Create a model object, and then add a dose object to the model object.

modelObj = sbiomodel('mymodel');

dose1Obj = adddose(modelObj, 'dose1');

2 Get the dose object from a model object.

myModelDose = getdose(modelObj);

See Also

Model object methods:

• adddose — add a dose object to a model object
• getdose — get dose information from a model object
• removedose — remove a dose object from a model object

Dose object constructor sbiodose.

ScheduleDose object and RepeatDose object methods:

• copyobj — copy a dose object from one model object to another model object
• get — view properties for a dose object
• set — define or modify properties for a dose object



2 Methods — Alphabetical List

2-158

getequations

Return system of equations for model object

Syntax

equations = getequations(modelobj)

equations = getequations(modelobj,configsetobj,variantobj,doseobj)

Description

equations = getequations(modelobj) returns equations, a string containing the
system of equations that represent modelobj, a Model object. The active Configset
object is used to generate the equations and must specify a deterministic solver.

equations = getequations(modelobj,configsetobj,variantobj,doseobj)

returns the system of equations that represent the model specified by a Model
object, Variant objects, and dose objects (RepeatDose or ScheduleDose). The
Configset object, configsetobj, is used to generate the equations and must specify a
deterministic solver.

Tips

Use getequations to see the system of equations that represent a model for:

• Publishing purposes
• Model debugging

Input Arguments

modelobj

Object of the Model class.



 getequations

2-159

Note: If using modelobj as the only input argument, the active Configset object must
specify a deterministic solver.

Default:

configsetobj

Object of the Configset class. This object must specify a deterministic solver.

Default: [] (Empty, which specifies the active Configset object for modelobj)

variantobj

Object or array of objects of the Variant class.

Default: [] (Empty, which specifies no variant object)

doseobj

Object or array of objects of the RepeatDose or ScheduleDose class.

Default: [] (Empty, which specifies no dose object)

Output Arguments

equations

String containing the system of equations that represent a model. This string includes
equations for reactions, rules, events, variants, and doses.

Examples

View System of Equations for Simple Model

View system of equations that represent a simple model, containing only reactions.

Import the lotka model, included with SimBiology, into a variable named model1:



2 Methods — Alphabetical List

2-160

model1 = sbmlimport('lotka');

View all equations that represent the model1 model and its active configset:

m1equations = getequations(model1)

m1equations =

ODEs:

d(y1)/dt = 1/unnamed*(ReactionFlux1 - ReactionFlux2)

d(y2)/dt = 1/unnamed*(ReactionFlux2 - ReactionFlux3)

d(z)/dt = 1/unnamed*(ReactionFlux3)

Fluxes:

ReactionFlux1 = c1*y1*x

ReactionFlux2 = c2*y1*y2

ReactionFlux3 = c3*y2

Parameter Values:

c1 = 10

c2 = 0.01

c3 = 10

unnamed = 1

Initial Conditions:

x = 1

y1 = 900

y2 = 900

z = 0

MATLAB displays the ODEs, fluxes, parameter values, and initial conditions for the
reactions in model1.

View System of Equations for Model and Dose

View system of equations that represent a model, containing only reactions, and a
repeated dose.

Import the lotka model, included with SimBiology, into a variable named model1:

model1 = sbmlimport('lotka');

Add a repeated dose to the model:

doseObj1 =  adddose(model1,'dose1','repeat');



 getequations

2-161

Set the properties of the dose to administer 3 mg, at a rate of 10 mg/hour, 6 times, at an
interval of every 24 hours, to species y1:

doseObj1.Amount = 0.003;

doseObj1.AmountUnits = 'gram';

doseObj1.Rate = 0.010;

doseObj1.RateUnits = 'gram/hour';

doseObj1.Repeat = 6;

doseObj1.Interval = 24;

doseObj1.TimeUnits = 'hour';

doseObj1.TargetName = 'y1';

View all equations that represent the model1 model, its active configset, and the
repeated dose:

m1_with_dose_equations = getequations (model1,[],[],doseObj1)

m1_with_dose_equations =

ODEs:

d(y1)/dt = 1/unnamed*(ReactionFlux1 - ReactionFlux2) + dose1

d(y2)/dt = 1/unnamed*(ReactionFlux2 - ReactionFlux3)

d(z)/dt = 1/unnamed*(ReactionFlux3)

Fluxes:

ReactionFlux1 = c1*y1*x

ReactionFlux2 = c2*y1*y2

ReactionFlux3 = c3*y2

Parameter Values:

c1 = 10

c2 = 0.01

c3 = 10

unnamed = 1

Initial Conditions:

y1 = 900

y2 = 900

z = 0

x = 1

Doses:

Variable                      Type                Units               

dose1                         repeatdose          gram    



2 Methods — Alphabetical List

2-162

MATLAB displays the ODEs, fluxes, parameter values, and initial conditions for the
reactions and the dose in model1.

See Also
Configset object | Model object | RepeatDose object | ScheduleDose
object | Variant object



 getIndex

2-163

getIndex
Class: SimBiology.export.Model

Get indices into ValueInfo and InitialValues properties

Syntax

indices = getIndex(model,name)

indices = getIndex(model,name,type)

Description

indices = getIndex(model,name) returns the indices of all ValueInfo objects in a
SimBiology.export.Model object that have a QualifiedName or Name property that
match the specified name input argument.

• getIndex first tries to match the QualifiedName property. If there are matches,
then getIndex returns their indices.

• If there are no matches based on QualifiedName, then getIndex tries to match the
Name property. If there are matches, then getIndex returns their indices.

• If there are no matches based on QualifiedName or Name, then getIndex returns
[].

indices = getIndex(model,name,type) returns indices for only the ValueInfo
objects with a Type property that matches the type input argument.

Input Arguments

model

SimBiology.export.Model object.

name

String containing a name to match against the QualifiedName, then Name, properties of
the ValueInfo objects in model.



2 Methods — Alphabetical List

2-164

type

String containing a name to match against the Type property of the ValueInfo objects
in model.

Default: All types.

Output Arguments

indices

Vector of indices indicating which ValueInfo objects in a SimBiology.export.Model
object match on the specified name and type.

Examples

Index Exported SimBiology Editable Values

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');

em = export(modelObj);

Get the index of the editable value with name y1.

ix = getIndex(em,'y1')

ix =

     3

Display the type of value.

em.ValueInfo(ix).Type

ans =

species

The name y1 corresponds to an editable species.

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”



 getIndex

2-165

• “Deploy a SimBiology Model”

See Also
export | SimBiology.export.Model | SimBiology.export.ValueInfo



2 Methods — Alphabetical List

2-166

getparameters (kineticlaw)
Get specific parameters in kinetic law object

Syntax

parameterObj = getparameters(kineticlawObj)

parameterObj = getparameters(kineticlawObj,

'ParameterVariablesValue')

Arguments

kineticlawObj Retrieve parameters used by the kinetic law
object.

ParameterVariablesValue Retrieve parameters used by the kinetic
law object corresponding to the specified
parameter in the ParameterVariables
property of the kinetic law object.

Description

parameterObj = getparameters(kineticlawObj) returns the parameters used by
the kinetic law object kineticlawObj to parameterObj.

parameterObj = getparameters(kineticlawObj,

'ParameterVariablesValue') returns the parameter in the
ParameterVariableNames property that corresponds to the parameter specified
in the ParameterVariables property of kineticlawObj, to parameterObj.
ParameterVariablesValue is the name of the parameter as it appears in the
ParameterVariables property of kineticlawObj. ParameterVariablesValue can
be a cell array of strings.

If you change the name of a parameter, you must configure all applicable elements
such as rules that use the parameter, any user-specified ReactionRate, or the kinetic
law object property ParameterVariableNames. Use the method setparameter to
configure ParameterVariableNames.



 getparameters (kineticlaw)

2-167

Examples

Create a model, add a reaction, and assign the ParameterVariableNames for the
reaction rate equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Add two parameter objects.

parameterObj1 = addparameter(kineticlawObj,'Va');

parameterObj2 = addparameter(kineticlawObj,'Ka');

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and
Km) that should to be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');

setparameter(kineticlawObj,'Km', 'Ka');

5 To retrieve a parameter variable:

parameterObj3 = getparameters(kineticlawObj, 'Vm')

MATLAB returns:

SimBiology Parameter Array

Index:    Name:    Value:    ValueUnits:

  1         Va       1          

parameterObj4 = getparameters (kineticlawObj, 'Km')

See Also

addparameter, getspecies, setparameter



2 Methods — Alphabetical List

2-168

getsensmatrix (SimData)
Get 3-D sensitivity matrix from SimData array

Syntax

[T, R, Outputs, InputFactors] = getsensmatrix(simDataObj)

[T, R, Outputs, InputFactors] =

getsensmatrix(simDataObj,OutputNames,InputFactorNames)

Arguments

T T is an m-by-1 array specifying time points for the sensitivity
data in R.

R R  is an m-by-n-by-p array of sensitivity data with times,
outputs, and input factors corresponding to its first, second, and
third dimensions respectively.

R(:,i,j) is the time course for the sensitivity of state
Outputs{i} to the input factor InputFactors{j}.

Outputs Name of the output factors, where output factors are the names of
the states for which you want to calculate sensitivity.

InputFactors Name of the input factors, where input factors are the names of
the states with respect to which you want to calculate sensitivity.

Description

[T, R, Outputs, InputFactors] = getsensmatrix(simDataObj) gets time and
sensitivity data from the SimData object (simDataObj).

When simDataObj contains more than one element, the output arguments are cell
arrays in which each cell contains data for the corresponding element of simDataObj.

The getsensmatrix method can only return sensitivity data that is contained in
the SimData object. The sensitivity data that is logged in a SimData object is set at



 getsensmatrix (SimData)

2-169

simulation time by the configuration set used during the simulation. This is typically
the model's active configuration set. For an explanation of how to set up a sensitivity
calculation using the configuration set, see “Sensitivity Analysis”. Note in particular that
the sensitivity data R returned by getsensmatrix may be normalized, as specified at
simulation time.

[T, R, Outputs, InputFactors] =

getsensmatrix(simDataObj,OutputNames,InputFactorNames) gets sensitivity
data for the outputs specified by OutputNames and the input factors specified by
InputFactorNames.

OutputNames and InputFactorNames can both be any one of the following:

• Empty array
• Single name
• Cell array of names

Pass an empty array for OutputNames or InputFactorNames to ask for sensitivity
data on all output factors or input factors contained in simDataObj, respectively.
You can also use qualified names such as 'CompartmentName.SpeciesName' or
'ReactionName.ParameterName' to resolve ambiguities.

Examples

This example shows how to retrieve sensitivity data from a SimData object.

1 Set up the simulation:

a Import the radio decay model from SimBiology examples.

modelObj  = sbmlimport('radiodecay');

b Retrieve the configuration settings and the sensitivity analysis options from the
modelObj.

configsetObj = getconfigset(modelObj);

sensitivityObj = get(configsetObj, 'SensitivityAnalysisOptions');

c Specify the species for which you want sensitivity data in the Outputs property.
All model species are selected in this example. Use the sbioselect function to
retrieve the species objects from the model.



2 Methods — Alphabetical List

2-170

allSpeciesObj = sbioselect(modelObj, 'Type', 'species');

set(sensitivityObj, 'Outputs', allSpeciesObj);

d Specify species and parameters with respect to which you want to calculate the
sensitivities in the Inputs property.

e Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true)

get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

  1

f Simulate and return the results in a SimData object.

simDataObj = sbiosimulate(modelObj)

2 Extract and plot sensitivity data from the SimData object.

a Use getsensmatrix to retrieve sensitivity data.

[t R outs ifacs] = getsensmatrix(simDataObj);

b Plot sensitivity values.

plot(t, R(:,:,2));

legend(outs);

title(['Sensitivities of species relative to ' ifacs{2}]);

See Also

display, get, getdata, resample, selectbyname

MATLAB function struct



 getspecies (kineticlaw)

2-171

getspecies (kineticlaw)
Get specific species in kinetic law object

Syntax

speciesObj = getspecies(kineticlawObj)

speciesObj = getspecies(kineticlawObj, 'SpeciesVariablesValue')

Arguments

kineticlawObj Retrieve species used by the kinetic law
object.

SpeciesVariablesValue Retrieve species used by the kinetic law
object corresponding to the specified species
in the SpeciesVariables property of the
kinetic law object.

Description

speciesObj = getspecies(kineticlawObj) returns the species used by the kinetic
law object kineticlawObj to speciesObj.

speciesObj = getspecies(kineticlawObj, 'SpeciesVariablesValue')

returns the species in the SpeciesVariableNames property to speciesObj.

SpeciesVariablesValue is the name of the species as it appears in the
SpeciesVariables property of kineticlawObj. SpeciesVariablesValue can be a
cell array of strings.

Species names are referenced by reaction objects, kinetic law objects, and model objects.
If you change the name of a species, the reaction updates to use the new name. You
must, however, configure all other applicable elements such as rules that use the species,
and the kinetic law object SpeciesVariableNames. Use the method setspecies to
configure SpeciesVariableNames.



2 Methods — Alphabetical List

2-172

Examples

Create a model, add a reaction, and then assign the SpeciesVariableNames for the
reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has one species variable (S) that

should to be set. To set this variable:

setspecies(kineticlawObj,'S', 'a');

4 Retrieve the species variable using getspecies.

speciesObj = getspecies (kineticlawObj, 'S')

MATLAB returns:

SimBiology Species Array

Index:  Compartment: Name: InitialAmount: InitialAmountUnits:

   1      unnamed     a        0                     

See Also

addspecies, getparameters, setparameter, setspecies



 getstoichmatrix (model)

2-173

getstoichmatrix (model)
Get stoichiometry matrix from model object

Syntax

M = getstoichmatrix(modelObj)

[M,objSpecies] = getstoichmatrix(modelObj)

[M,objSpecies,objReactions] = getstoichmatrix(modelObj)

Arguments

M Adjacency matrix for modelObj.
modelObj Specify the model object modelObj.
objSpecies Return the list of modelObj species by Name

property of the species.

If the species are in multiple compartments,
species names are qualified with
the compartment name in the form
compartmentName.speciesName. For
example, nucleus.DNA, cytoplasm.mRNA.

objReactions Return the list of modelObj reactions by the
Name property of reactions.

Description

getstoichmatrix returns a stoichiometry matrix for a model object.

M = getstoichmatrix(modelObj) returns a stoichiometry matrix for a SimBiology
model object (modelObj) to M.

A stoichiometry matrix is defined by listing all reactions contained by modelObj column-
wise and all species contained by modelObj row-wise in a matrix. The species of the



2 Methods — Alphabetical List

2-174

reaction are represented in the matrix with the stoichiometric value at the location of
[row of species, column of reaction]. Reactants have negative values. Products have
positive values. All other locations in the matrix are 0.

For example, if modelObj is a model object with two reactions with names R1 and R2
and Reaction values of 2 A + B -> 3 C and B + 3 D -> 4 A, the stoichiometry
matrix would be defined as:

      R1   R2

A     -2    4

B     -1   -1

C      3    0

D      0   -3

[M,objSpecies] = getstoichmatrix(modelObj) returns the stoichiometry matrix
to M and the species to objSpecies. objSpecies is defined by listing all Name property
values of species contained by Obj. In the above example, objSpecies would be {'A',
'B', 'C', 'D'};.

[M,objSpecies,objReactions] = getstoichmatrix(modelObj) returns the
stoichiometry matrix to M and the reactions to objReactions. objReactions is defined
by listing all Name property values of reactions contained by modelObj. In the above
example, objReactions would be {'R1', 'R2'}.

Examples

1 Read in m1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');

2 Get the stoichiometry matrix for the m1:

[M,objSpecies,objReactions] = getstoichmatrix(m1)

See Also

getadjacencymatrix, “Determining the Stoichiometry Matrix for a Model”



 getTable(ScheduleDose,RepeatDose)

2-175

getTable(ScheduleDose,RepeatDose)
Return data from SimBiology dose object as table

Syntax

tbl = getTable(doseObj)

Description

tbl = getTable(doseObj) returns dosing data from the dose object doseObj as a
table tbl.

Input Arguments

doseObj — Dose object
ScheduleDose object | RepeatDose object | array of dose objects

Dose object, specified as a ScheduleDose object or RepeatDose object or array of
these objects.

Output Arguments

tbl — Dosing data
table | cell array of tables

Dosing data, returned as a table or cell array of tables. If doseObj is an array of dose
objects, then tbl is a cell array of tables with the same size as doseObj.

Examples

Retrieve a Table of Dosing Information from a RepeatDose Object

Create a RepeatDose object with some dosing information.



2 Methods — Alphabetical List

2-176

rdose = sbiodose('rd','repeat');

rdose.TargetName = 'x';

rdose.StartTime = 5;

rdose.TimeUnits = 'second';

rdose.Amount = 300;

rdose.AmountUnits = 'molecule';

rdose.Rate = 1;

rdose.RateUnits = 'molecule/second';

rdose.Interval = 100;

rdose.RepeatCount = 2;

Get a table of such dosing information.

tbl = getTable(rdose)

tbl = 

    StartTime    Amount    Rate    Interval    RepeatCount

    _________    ______    ____    ________    ___________

    5            300       1       100         2         

Note that the units are also copied over and assigned to
tbl.Properties.VariableUnits property.

tbl.Properties

ans = 

             Description: ''

    VariableDescriptions: {}

           VariableUnits: {'second'  'molecule'  'molecule/second'  'second'  ''}

          DimensionNames: {'Row'  'Variable'}

                UserData: []

                RowNames: {}

           VariableNames: {'StartTime'  'Amount'  'Rate'  'Interval'  'RepeatCount'}

Retrieve a Table of Dosing Information from a Schedule Object

Create a ScheduleDose object with some dosing information.

sdose = sbiodose('sdose','schedule');

sdose.Amount = [100 200 300];

sdose.Time = [5 10 15];

Get a table of such dosing information.



 getTable(ScheduleDose,RepeatDose)

2-177

tbl = getTable(sdose)

tbl = 

    Time    Amount

    ____    ______

     5      100   

    10      200   

    15      300   

See Also
RepeatDose object | ScheduleDose object | setTable



2 Methods — Alphabetical List

2-178

getvariant (model)

Get variant from model

Syntax

variantObj = getvariant(modelObj)

variantObj = getvariant(modelObj, 'NameValue')

Arguments

variantObj Variant object returned by the getvariant method.
modelObj Model object from which to get the variant.
'NameValue' Name of the variant to get from the model object modelObj.

Description

variantObj = getvariant(modelObj) returns SimBiology variant objects contained
by the SimBiology model object modelObj to variantObj.

A SimBiology variant object stores alternate values for properties on a SimBiology model.
For more information on variants, see Variant object.

variantObj = getvariant(modelObj, 'NameValue') returns the SimBiology
variant object with the name NameValue, contained by the SimBiology model object,
modelObj.

View properties for a variant object with the get command, and modify properties for a
variant object with the set command.

Note: Remember to use the addcontent method instead of using the set method on the
Content property, because the set method replaces the data in the Content property
whereas addcontent appends the data.



 getvariant (model)

2-179

To copy a variant object to another model, use copyobj. To remove a variant object from
a SimBiology model, use the delete method.

Examples

1 Create a model containing several variants.

modelObj = sbiomodel('mymodel');

variantObj1 = addvariant(modelObj, 'v1');

variantObj2 = addvariant(modelObj, 'v2');

2 Get all variants in the model.

vObjs = getvariant(modelObj)  

SimBiology Variant Array

   Index:  Name:             Active:

   1       v1                false

   2       v2                false

3 Get the variant object named 'v2' from the model.

vObjv2 = getvariant(modelObj, 'v2');

See Also

addvariant, removevariant



2 Methods — Alphabetical List

2-180

GroupedData object
Table-like collection of data and metadata

Description

The groupedData object is a table-like object that supports all the methods and
properties of table and has two additional properties to identify the independent
variable and an optional grouping variable. It also has additional methods that let you
create doses from data set containing dosing data and convert a groupedData object to a
table.

Constructor Summary

groupedData Create a groupedData object.

Method Summary

The groupedData object supports all methods of table and provides the following
additional methods.

createDoses(groupedData) Create dose objects from groupedData
object

groupedData2table (groupedData)  
Convert groupedData object to table

Properties

The groupedData object supports all properties of table and provides the following
additional properties.

GroupVariableName A string indicating the name of grouping variable that
indicates the groups in the data. To indicate there are no
groups (or just one group), set the property to the empty
string ''.



 GroupedData object

2-181

IndependentVariableName A string indicating the name of the independent
variable in the data such as time. To indicate there is no
independent variable, set the property to the empty string
''.

Examples

Create a GroupedData Object from Data Set

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or
more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of
newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the sample dataset.

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the properties.

grpData.Properties

ans = 

                Description: 'This dataset was generated using sbionmimport.

FileNa...'

       VariableDescriptions: {}

              VariableUnits: {}

             DimensionNames: {'Observations'  'Variables'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'Time'  'Dose'  'Response'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'



2 Methods — Alphabetical List

2-182

GroupVariableName and IndpendentVariableName have been automatically
assigned to 'ID' and 'Time' respectively.

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–
83.

See Also
groupedData object | sbiofit | sbiofitmixed | table



 groupedData2table (groupedData)

2-183

groupedData2table (groupedData)
Convert groupedData object to table

Syntax

tbl = groupedData2table(grpData)

Description

tbl = groupedData2table(grpData) converts a groupedData object grpData to
a table.

Input Arguments

grpData — Grouped data
groupedData object

Grouped data, specified as a groupedData object.

Output Arguments

tbl — Data table
table

Data table, returned as a table.

Examples

Convert a GroupedData Object to a Table

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or
more sustaining doses by intravenous bolus administration. A total of between 1 and 6



2 Methods — Alphabetical List

2-184

concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of
newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the sample dataset.

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the properties.

grpData.Properties

ans = 

                Description: 'This dataset was generated using sbionmimport.

FileNa...'

       VariableDescriptions: {}

              VariableUnits: {}

             DimensionNames: {'Observations'  'Variables'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'Time'  'Dose'  'Response'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'

GroupVariableName and IndpendentVariableName have been automatically
assigned to 'ID' and 'Time', respectively.

Convert grpData to a table.

tbl = groupedData2table(grpData);

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–
83.



 groupedData2table (groupedData)

2-185

See Also
groupedData object | sbiofit | sbiofitmixed | table



2 Methods — Alphabetical List

2-186

isaccelerated(SimFunction)
Determine if SimFunction object is accelerated

Syntax

tf = isaccelerated(F)

tf = isaccelerated(F,computerType)

Arguments

F SimFunction object created by the
createSimFunction method of a SimBiology model.

computerType String specifying a computer type. You can specify any
valid archstr supported by the function computer.

Description

tf = isaccelerated(F) returns true if SimFunction object F is accelerated for the
current type of computer or false otherwise.

tf = isaccelerated(F,computerType) returns true if F is accelerated for the
specified type of computer or false otherwise.

Note: F is automatically accelerated at the first function execution. However, manually
accelerate the object if you want it accelerated in your deployment applications.

Examples

Simulate SimFunction Object

This example uses the the Lotka-Volterra (predator-prey) model described by Gillespie
[1].



 isaccelerated(SimFunction)

2-187

Load the sample project containing the lotka model.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and y1
and y2 as the output of the function with no dose.

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f = 

SimFunction

Parameters:

         Name         Value       Type    

    ______________    _____    ___________

    'Reaction1.c1'      10     'parameter'

    'Reaction2.c2'    0.01     'parameter'

Observables: 

    Name      Type   

    ____    _________

    'y1'    'species'

    'y2'    'species'

Dosed: None

The SimFunction object f is not set for acceleration at the time of creation. But it will
be automatically accelerated when executed.

f.isAccelerated

ans =

     0

Define an input matrix that contains parameter values for c1 and c2.

phi = [10 0.01];

Run simulations until the stop time is 5 and plot the simulation results.



2 Methods — Alphabetical List

2-188

sbioplot(f(phi,5))

Confirm the SimFunction object f was accelerated during execution.

f.isAccelerated

ans =

     1

See Also

createSimFunction, SimFunction object



 isaccelerated(SimFunction)

2-189

References

[1] Gillespie D.T. "Exact Stochatic Simulation of Coupled Chemical Reactions," (1977)
The Journal of Physical Chemistry, 81(25), 2340-2361.



2 Methods — Alphabetical List

2-190

isAccelerated
Class: SimBiology.export.Model

Determine whether an exported SimBiology model is accelerated

Syntax

tf = isAccelerated(model)

tf = isAccelerated(model,computerType)

Description

tf = isAccelerated(model) returns true if model is accelerated for the current
type of computer, and false otherwise.

tf = isAccelerated(model,computerType) returns true if model is accelerated
for the specified computer type.

Input Arguments

model

SimBiology.export.Model object.

computerType

String specifying a computer type. You can specify any valid archstr supported by the
function computer.

Output Arguments

tf

Logical value true if model is accelerated for the current computer type, or computer
type specified by computerType. Logical value false if the exported model is not
accelerated for the specified computer type.



 isAccelerated

2-191

Examples

Accelerate Exported SimBiology Model

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');

em = export(modelObj)

em = 

  Model with properties:

           Name: 'lotka'

     ExportTime: '12-Dec-2012 15:20:13'

    ExportNotes: ''

Accelerate the exported model.

accelerate(em);

em.isAccelerated

ans =

     1

The logical value 1 indicates that the exported model is accelerated.

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
computer | SimBiology.export.Model | SimBiology.export.Model.accelerate



2 Methods — Alphabetical List

2-192

KineticLaw object

Kinetic law information for reaction

Description

The kinetic law object holds information about the abstract kinetic law applied to a
reaction and provides a template for the reaction rate. In the model, the SimBiology
software uses the information you provide in a fully defined kinetic law object to
determine the ReactionRate property in the reaction object.

When you first create a kinetic law object, you must specify the name of the abstract
kinetic law to use. The SimBiology software fills in the KineticLawName property and
the Expression property in the kinetic law object with the name of the abstract kinetic
law you specified and the mathematical expression respectively. The software also fills in
the ParameterVariables property and the SpeciesVariables property of the kinetic
law object with the values found in the corresponding properties of the abstract kinetic
law object.

To obtain the reaction rate, you must fully define the kinetic law object:

1 In the ParameterVariableNames property, specify the parameters from
the model that you want to substitute in the expression (Expression
(AbstractKineticLaw, KineticLaw) property).

2 In the SpeciesVariableNames property, specify the species from the model that
you want to substitute in the expression.

The SimBiology software substitutes in the expression, the names of parameter
variables and species variables in the order specified in the ParameterVariables
and SpeciesVariables properties respectively.

The software then shows the substituted expression as the reaction rate in the
ReactionRate property of the reaction object. If the kinetic law object is not fully
defined, the ReactionRate property remains ' ' (empty).

For links to kinetic law object property reference pages, see “Property Summary” on page
2-196.



 KineticLaw object

2-193

Properties define the characteristics of an object. Use the get and set commands to list
object properties and change their values at the command line. You can interactively
change object properties in the SimBiology desktop.

For an explanation of how relevant properties relate to one another, see “Command Line”
on page 2-193.

The following sections use a kinetic law example to show how you can fully define your
kinetic law object to obtain the reaction rate in the SimBiology desktop and at the
command line.

The Henri-Michaelis-Menten kinetic law is expressed as follows:

V S K Smm * / ( )+

In the SimBiology software Henri-Michaelis-Menten is a built-in abstract kinetic
law, where Vm and Km are defined in the ParameterVariables property of the abstract
kinetic law object, and S is defined in the SpeciesVariables property of the abstract
kinetic law object.

SimBiology Desktop

To fully define a kinetic law in the SimBiology desktop, define the names of the species
variables and parameter variables that participate in the reaction rate.

Command Line

To fully define the kinetic law object at the command line, define the names of the
parameters in the ParameterVariableNames property of the kinetic law object, and
define the species names in the SpeciesVariableNames property of the kinetic law
object. For example, to apply the Henri-Michaelis-Menten abstract kinetic law to a
reaction

  A -> B

  where Vm = Va, Km = Ka

  and S = A

Define Va and Ka in the ParameterVariableNames property to substitute the
variables that are in the ParameterVariables property (Vm and Km). Define A in
the SpeciesVariableName property to be used to substitute the species variable in
the SpeciesVariables property (S). Specify the order of the model parameters to be
used for substitution in the same order that the parameter variables are listed in the



2 Methods — Alphabetical List

2-194

ParameterVariables property. Similarly, specify species order if more than one species
variable is represented.

% Find the order of the parameter variables 

% in the kinetic law expression. 

get(kineticlawObj, 'ParameterVariables')

ans = 

    'Vm'    'Km'

% Find the species variable in the

% kinetic law expression

get(kineticlawObj, 'SpeciesVariables')

ans = 

    'S'

% Specify the parameters and species variables 

% to be used in the substitution. 

% Remember to specify order, for example Vm = Va 

% Vm is listed first in 'ParameterVariables', 

% therefore list Va first in 'ParameterVariableNames'.

set(kineticlawObj,'ParameterVariableNames', {'Va' 'Ka'});

set(kineticlawObj,'SpeciesVariableNames', {'A'});

The rate equation is assigned in the reaction object as follows:

Va*A/(Ka + A)

For a detailed procedure, see “Examples” on page 2-196.

The following table summarizes the relationships between the properties in the abstract
kinetic law object and the kinetic law object in the context of the above example.

Property Property Purpose Abstract Kinetic Law
Object

Kinetic Law Object

Name (abstract kinetic law
object)
KineticLawName (kinetic
law object)

Name of abstract
kinetic law applied to a
reaction. For example:

Read-only for
built-in abstract
kinetic law. User-
determined for

Read-only



 KineticLaw object

2-195

Property Property Purpose Abstract Kinetic Law
Object

Kinetic Law Object

Henri-Michaelis

-Menten
user-defined
abstract kinetic
law.

Expression Mathematical
expression used to
determine the reaction
rate equation.

For example:

V S K Smm * / ( )+

Read-only for
built-in abstract
kinetic law. User-
determined for
user-defined
abstract kinetic
law.

Read-only; depends on
abstract kinetic law
applied to reaction.

ParameterVariables Variables in
Expression that
are parameters. For
example:

Vm and Km

Read-only for
built-in abstract
kinetic law. User-
determined for
user-defined
abstract kinetic
law.

Read-only; depends on
abstract kinetic law
applied to reaction.

SpeciesVariables Variables in
Expression that are
species. For example:

S

Read-only for
built-in abstract
kinetic law. User-
determined for
user-defined
abstract kinetic
law.

Read-only; depends on
abstract kinetic law
applied to reaction.

ParameterVariableNamesVariables in
ReactionRate that
are parameters. For
example:

Va and Ka

Not applicable Define these variables
corresponding to
ParameterVariables.

SpeciesVariablesNames Variables in
ReactionRate that are
species. For example:

A

Not applicable Define these variables
corresponding to
SpeciesVariables.



2 Methods — Alphabetical List

2-196

Constructor Summary
addkineticlaw (reaction) Create kinetic law object and add to

reaction object

Method Summary
addparameter (model, kineticlaw)  

Create parameter object and add to model
or kinetic law object

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
getparameters (kineticlaw) Get specific parameters in kinetic law

object
getspecies (kineticlaw) Get specific species in kinetic law object
reorder (model, compartment, kinetic law)  

Reorder component lists
set (any object) Set object properties
setparameter (kineticlaw) Specify specific parameters in kinetic law

object
setspecies (kineticlaw) Specify species in kinetic law object

Property Summary

Examples
This example shows how to define the reaction rate for a reaction.

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'A -> B');



 KineticLaw object

2-197

2 Define a kinetic law for the reaction object.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Query the parameters and species variables defined in the kinetic law.

get(kineticlawObj, 'ParameterVariables')

ans = 

    'Vm'    'Km'

get(kineticlawObj, 'SpeciesVariables')

ans = 

    'S'

4 Define Va and Ka as ParameterVariableNames, which correspond to the
ParameterVariables Vm and Km. To set these variables, first create the parameter
variables as parameter objects (parameterObj1, parameterObj2) with the names
Va and Ka, and then add them to kineticlawObj. The species object with Name A is
created when reactionObj is created and need not be redefined.

parameterObj1 = addparameter(kineticlawObj, 'Va');

parameterObj2 = addparameter(kineticlawObj, 'Ka');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Va' 'Ka'});

set(kineticlawObj,'SpeciesVariableNames', {'A'});

6 Verify that the reaction rate is expressed correctly in the reaction object
ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Va*A/(Ka+A)

See Also
AbstractKineticLaw object, Configset object, Model object, Parameter
object, Reaction object, Root object, Rule object, Species object



2 Methods — Alphabetical List

2-198

SimBiology property Expression(AbstractKineticLaw, KineticLaw)



 LeastSquaresResults object

2-199

LeastSquaresResults object
Results object containing estimation results from least-squares regression

Description

The LeastSquaresResults object is a superclass of two results objects: NLINResults
object and OptimResults object. These objects contain estimation results from
fitting a SimBiology model to data using sbiofit with any supported algorithm.

If sbiofit uses the nlinfit estimation algorithm, the results object is the
NLINResults object. If sbiofit uses any other supporting algorithm, then the results
object is an OptimResults object. See the sbiofit function for the list of supported
algorithms.

Method Summary

boxplot(LeastSquaresResults,OptimResults,NLINResults) 
Create box plot showing the variation of
estimated SimBiology model parameters

fitted(LeastSquaresResults,OptimResults,NLINResults) 
Return simulation results of SimBiology
model fitted using least-squares regression

plot(LeastSquaresResults,OptimResults,NLINResults) 
Compare simulation results to the training
data, creating a time-course subplot for
each group

plotActualVersusPredicted(LeastSquaresResults,OptimResults,NLINResults) 
Compare predictions to actual data,
creating a subplot for each response

plotResiduals(LeastSquaresResults,OptimResults,NLINResults) 
Plot residuals for each response, using
time, group, or prediction as x-axis

plotResidualDistribution(LeastSquaresResults,OptimResults,NLINResults) 
Plot the distribution of the residuals



2 Methods — Alphabetical List

2-200

predict(LeastSquaresResults,OptimResults,NLINResults) 
Simulate and evaluate fitted SimBiology
model

random(LeastSquaresResults,OptimResults,NLINResults) 
Simulate SimBiology model, adding
variations by sampling error model

summary(LeastSquaresResults,OptimResults,NLINResults) 
Plot a summary figure that contains
estimated values and estimation statistics

Properties

GroupName Categorical variable representing the name of the group
associated with the results, or [] if the 'Pooled' name-
value pair argument was set to true when you ran
sbiofit.

Beta Table of estimated parameters where the jth row
represents the jth estimated parameter βj. It contains
transformed values of parameter estimates if any
parameter transform is specified.

Standard errors of these parameter estimates
(StandardError) are calculated as:
sqrt(diag(COVB)).

It can also contain the following variables:

• Bounds — the values of transformed parameter
bounds that you specified during fitting

• CategoryVariableName — the names of categories
or groups that you specified during fitting

• CategoryValue — the values of category variables
specified by CategoryVariableName

This table contains one row per distinct parameter value.



 LeastSquaresResults object

2-201

ParameterEstimates Table of estimated parameters where the jth row
represents the jth estimated parameter βj. This table
contains untransformed values of parameter estimates.

Standard errors of these parameter estimates
(StandardError) are calculated as:
sqrt(diag(CovarianceMatrix)).

It can also contain the following variables:

• Bounds — the values of parameter bounds that you
specified during fitting

• CategoryVariableName — the names of categories
or groups that you specified during fitting

• CategoryValue — the values of category variables
specified by CategoryVariableName

This table contains sets of parameter values that are
identified for each individual or group.

J Jacobian matrix of the model, with respect to an
estimated parameter, that is,

J i j k
y

k

j
it

( , , ) =
∂

∂b

where ti is the ith time point, βj is the jth estimated
parameter in the transformed space, and yk is the kth
response in the group of data.

COVB Estimated covariance matrix for Beta, which is
calculated as: COVB = inv(J'*J)*MSE.



2 Methods — Alphabetical List

2-202

CovarianceMatrix Estimated covariance matrix for ParameterEstimates,
which is calculated as: CovarianceMatrix =
T'*COVB*T, where T = diag(JInvT(Beta)).

JInvT(Beta) returns a Jacobian matrix of Beta which
is inverse transformed accordingly if you specified any
transform to estimated parameters.

For instance, suppose you specified the log-transform for
an estimated parameter x when you ran sbiofit. The
inverse transform is: InvT = exp(x), and its Jacobian
is: JInvT = exp(x) since the derivative of exp is also
exp.

R Residuals matrix where Rij is the residual for the ith time
point and the jth response in the group of data.

LogLikelihood Maximized loglikelihood for the fitted model.
AIC Akaike Information Criterion (AIC), calculated as AIC =

2*(-LogLikelihood + P), where P is the number of
parameters.

BIC Bayes Information Criterion (BIC), calculated as BIC
= -2*LogLikelihood + P*log(N), where N is
the number of observations, and P is the number of
parameters.

DFE Degrees of freedom for error, calculated as DFE = N-
P, where N is the number of observations and P is the
number of parameters.

MSE Mean squared error.
SSE Sum of squared (weighted) errors or residuals.
Weights Matrix of weights with one column per response and one

row per observation.
EstimatedParameterNames Cell array of strings specifying estimated parameter

names.



 LeastSquaresResults object

2-203

ErrorModelInfo Table describing the error models and estimated error
model parameters.

• It has one row per error model.
• The ErrorModelInfo.Properties.RowsNames

property identifies which responses the row applies to.
• The table contains three variables: ErrorModel, a,

and b. The ErrorModel variable is categorical. The
variables a and b can be NaN when they do not apply
to a particular error model.

There are four built-in error models. Each model defines
the error using a standard mean-zero and unit-variance
(Gaussian) variable e, the function value f, and one or
two parameters a and b. In SimBiology, the function f
represents simulation results from a SimBiology model.

• 'constant': y f ae= +

• 'proportional': y f b f e= +

• 'combined': y f a b f e= + +( )

• 'exponential': y f ae= *exp( )

ErrorModel Name of the error model. When there are multiple error
models, this property is a cell array of strings containing
the names of error models.

This property will be removed in a future release. Use
ErrorModelInfo.ErrorModel instead.

ErrorParameters Table of error model parameters.

When there are multiple error models, this property is a
table with one row per error model.

This property will be removed in a future release. Use
ErrorModelInfo.a and ErrorModelInfo.b instead.

EstimationFunction Name of the estimation function.



2 Methods — Alphabetical List

2-204

Note: Loglikelihood, AIC, and BIC properties are empty for LeastSquaresResults
objects that were obtained before R2016a.

See Also
NLINResults object | OptimResults object | sbiofit | sbiofitmixed



 Model object

2-205

Model object
Model and component information

Description
The SimBiology model object represents a model, which is a collection of interrelated
reactions and rules that transform, transport, and bind species. The model includes
model components such as compartments, reactions, parameters, rules, and events. Each
of the components is represented as a property of the model object. A model object also
has a default configuration set object to define simulation settings. You can also add
more configuration set objects to a model object.

See “Property Summary” on page 2-207 for links to model property reference pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the SimBiology desktop.

You can retrieve SimBiology model objects from the SimBiology root object. A SimBiology
model object has its Parent property set to the SimBiology root object. The root object
contains a list of model objects that are accessible from the MATLAB command line and
from the SimBiology desktop. Because both the command line and the desktop point to
the same model object in the Root object, any changes you make to the model at the
command line are reflected in the desktop, and vice versa.

Constructor Summary

Method Summary
addcompartment (model, compartment)  

Create compartment object
addconfigset (model) Create configuration set object and add to

model object
adddose (model) Add dose object to model
addevent (model) Add event object to model object



2 Methods — Alphabetical List

2-206

addparameter (model, kineticlaw)  
Create parameter object and add to model
or kinetic law object

addreaction (model) Create reaction object and add to model
object

addrule (model) Create rule object and add to model object
addspecies (model, compartment)  

Create species object and add to
compartment object within model object

addvariant (model) Add variant to model
copyobj (any object) Copy SimBiology object and its children
createSimFunction (model) Create SimFunction object
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
export (model) Export SimBiology models for deployment

and standalone applications
get (any object) Get object properties
getadjacencymatrix (model) Get adjacency matrix from model object
getconfigset (model) Get configuration set object from model

object
getdose (model) Return SimBiology dose object
getequations Return system of equations for model object
getstoichmatrix (model) Get stoichiometry matrix from model object
getvariant (model) Get variant from model
removeconfigset (model) Remove configuration set from model
removedose (model) Add dose object to model
removevariant (model) Remove variant from model
reorder (model, compartment, kinetic law)  

Reorder component lists
set (any object) Set object properties
setactiveconfigset (model) Set active configuration set for model object
verify (model, variant) Validate and verify SimBiology model



 Model object

2-207

Property Summary

See Also

AbstractKineticLaw object, Configset object, KineticLaw object,
Parameter object, Reaction object, Root object, Rule object, Species
object



2 Methods — Alphabetical List

2-208

NLINResults object
Estimation results object, subclass of LeastSquaresResults

Description

The NLINResults object contains estimation results from fitting a SimBiology model to
data using sbiofit with nlinfit as a choice of estimation algorithm. See the sbiofit
function for a list of other supported algorithms.

Method Summary

The NLINResults object shares all methods of the LeastSquaresResults object.

Properties

The NLINResults object shares all properties of the LeastSquaresResults object .

See Also
LeastSquaresResults object | OptimResults object | sbiofit |
sbiofitmixed



 NLMEResults object

2-209

NLMEResults object

Results object containing estimation results from nonlinear mixed-effects modeling

Description

The NLMEResults object contains estimation results from fitting a nonlinear mixed-
effects model using sbiofitmixed.

Method Summary

boxplot(NLMEResults) Create box plot showing the variation of
estimated SimBiology model parameters

covariateModel(NLMEResults) Return a copy of the covariate model that
was used for the nonlinear mixed-effects
estimation using sbiofitmixed

fitted(NLMEResults) Return the simulation results of a fitted
nonlinear mixed-effects model

plot(NLMEResults) Compare simulation results to the training
data, creating a time-course subplot for
each group

plotActualVersusPredicted(NLMEResults)  
Compare predictions to actual data,
creating a subplot for each response

plotResiduals(NLMEResults) Plot the residuals for each response, using
the time, group, or prediction as the x-axis

plotResidualDistribution(NLMEResults)  
Plot the distribution of the residuals

predict(NLMEResults) Simulate and evaluate fitted SimBiology
model

random(NLMEResults) Simulate a SimBiology model, adding
variations by sampling the error model



2 Methods — Alphabetical List

2-210

Properties

FixedEffects Table of the estimated fixed effects and their standard
errors.

RandomEffects Table of the estimated random effects for each group.
IndividualParameterEstimatesTable of estimated parameter values, including fixed and

random effects.
PopulationParameterEstimatesTable of estimated parameter values, including only fixed

effects.
RandomEffectCovarianceMatrixTable of the covariance matrix of the random effects.
stats Struct of statistics returned by the nlmefit and

nlmefitsa algorithm.
CovariateNames Cell array of strings specifying covariate names.
EstimatedParameterNames Cell array of strings specifying estimated parameter

names.
ErrorModelInfo Table describing the error models and estimated error

model parameters.

The table has one row with three variables: ErrorModel,
a, and b. The ErrorModel variable is categorical. The
variables a and b can be NaN when they do not apply to a
particular error model.

There are four built-in error models. Each model defines
the error using a standard mean-zero and unit-variance
(Gaussian) variable e, the function value f, and one or
two parameters a and b. In SimBiology, the function f
represents simulation results from a SimBiology model.

• 'constant': y f ae= +

• 'proportional': y f b f e= +

• 'combined': y f a b f e= + +( )

• 'exponential': y f ae= *exp( )



 NLMEResults object

2-211

ErrorModel Name of the error model. This property will be removed
in a future release. Use ErrorModelInfo.ErrorModel
instead.

ErrorParameters Table of error model parameters. This property will be
removed in a future release. Use ErrorModelInfo.a
and ErrorModelInfo.b instead.

EstimationFunction Name of the estimation function which must be either
'nlmefit' or 'nlmefitsa'.

LogLikelihood Maximized loglikelihood for the fitted model.
AIC Akaike Information Criterion (AIC), calculated as AIC =

2*(-LogLikelihood + P), where P is the number of
parameters. For details, see nlmefit.

BIC Bayes Information Criterion (BIC), calculated as BIC
= -2*LogLikelihood + P*log(N), where N is the
number of observations or groups, and P is the number of
parameters. For details, see nlmefit.

DFE Degrees of freedom for error, calculated as DFE = N-
P, where N is the number of observations and P is the
number of parameters.

Note: If you are using the nlmefitsa method, Loglikelihood, AIC, and BIC
properties are empty by default. To calculate these values, specify the 'LogLikMethod'
option of nlmefitsa when you run sbiofitmixed as follows.

opt.LogLikMethod = ‘is’;

fitResults = sbiofitmixed(...,'nlmefitsa',opt);

See Also
nlmefit | nlmefitsa | sbiofit | sbiofitmixed



2 Methods — Alphabetical List

2-212

OptimResults object
Estimation results object, subclass of LeastSquaresResults

Description

The OptimResults object contains estimation results from fitting a SimBiology model to
data using the sbiofit function with any supported algorithm except nlinfit. See the
sbiofit function for a list of supported algorithms.

Method Summary

The OptimResults object shares all methods of the LeastSquaresResults object.

Properties

The OptimResults object shares all properties of the LeastSquaresResults object
and has the following additional properties.

ExitFlag An exit flag specific to the estimation function.
Output A struct of additional outputs specific to the estimation

function.

Note: See the reference page of the specific algorithm to get more information on the
values of ExitFlag and the Output structure.

See Also
LeastSquaresResults object | NLINResults object | sbiofit |
sbiofitmixed



 Parameter object

2-213

Parameter object
Parameter and scope information

Description

The parameter object represents a parameter, which is a quantity that can change or
can be constant. SimBiology parameters are generally used to define rate constants.
You can add parameter objects to a model object or a kinetic law object. The scope of a
parameter depends on where you add the parameter object: If you add the parameter
object to a model object, the parameter is available to all reactions in the model and
the Parent property of the parameter object is SimBiology.Model. If you add the
parameter object to a kinetic law object, the parameter is available only to the reaction
for which you are using the kinetic law object and the Parent property of the parameter
object is SimBiology.KineticLaw.

See “Property Summary” on page 2-214 for links to parameter object property
reference pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.

Constructor Summary

addparameter (model, kineticlaw)  
Create parameter object and add to model
or kinetic law object

Method Summary

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object



2 Methods — Alphabetical List

2-214

get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

set (any object) Set object properties

Property Summary

See Also

AbstractKineticLaw object, Configset object, KineticLaw object, Model
object, Reaction object, Root object, Rule object, Species object



 PKCompartment object

2-215

PKCompartment object

Used by PKModelDesign to create SimBiology model

Description

The PKCompartment object is used by the PKModelDesign object to construct a
SimBiology model for pharmacokinetic modeling. PKCompartment holds the following
information:

• Name of the compartment
• Dosing type
• Elimination type
• Whether the drug concentration in this compartment is reported

The PKCompartment class is a subclass of the hgsetget class which is a subclass of
the handle class. For more information on the inherited methods, see hgsetget, and
handle.

Construction

addCompartment (PKModelDesign) Add compartment to PKModelDesign
object

Method Summary

get (any object) Get object properties
set (any object) Set object properties



2 Methods — Alphabetical List

2-216

Property Summary

See Also

“Create Pharmacokinetic Models” in the SimBiology User's Guide, PKModelDesign
object



 PKData object

2-217

PKData object

Define roles of data set columns

Compatibility

PKData object will be removed in a future release. Use groupedData object
instead.

Description

The properties of the PKData object specify what each column in the data represents. The
PKData object specifies which columns in the data set represent the following:

• The grouping variable
• The independent and dependent variables
• The dose
• The rate (only if infusion is the dosing type)
• The covariates

This information is used by the fitting functions, sbionlmefit and sbionlinfit.

To create the PKData object specify:

pkDataObject = PKData(data);

Where data is the imported data set.

The PKData class is a subclass of the hgsetget class, which is a subclass of the handle
class. For more information on the inherited methods, see hgsetget and handle.

Construction

PKData Create PKData object



2 Methods — Alphabetical List

2-218

Method Summary

get (any object) Get object properties
getCovariateData (pkdata) Create design matrix needed for fit
set (any object) Set object properties

Property Summary

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKModelDesign
object



 PKModelDesign object

2-219

PKModelDesign object
Helper object to construct pharmacokinetic model

Description

Use the PKModelDesign object to construct a SimBiology model for PK modeling. The
PKModelDesign object lets you specify the number of compartments, the type of dosing,
and method of elimination which you then use to construct the SimBiology model object
with the necessary compartments, species, reactions, rules, and events.

pkm = PKModelDesign;

Use the addCompartment method to add a compartment with a specified dosing and
elimination. addCompartment adds each subsequent compartment and connects it to the
previous compartment using a reversible reaction. This reaction models the flux between
compartments in a PK model.

The construct method uses the PKModelDesign object to create a SimBiology model
object.

The PKModelDesign class is a subclass of the hgsetget class, which is a subclass of the
handle class. For more information on the inherited methods see hgsetget and handle.

Construction

PKModelDesign Create PKModelDesign object

Method Summary

addCompartment (PKModelDesign) Add compartment to PKModelDesign
object

construct (PKModelDesign) Construct SimBiology model from
PKModelDesign object

get (any object) Get object properties



2 Methods — Alphabetical List

2-220

set (any object) Set object properties

Property Summary

See Also

“Create Pharmacokinetic Models” in the SimBiology User's Guide, PKCompartment
object



 PKModelMap object

2-221

PKModelMap object

Define SimBiology model components’ roles

Compatibility

PKModelMap object will be removed in a future release. Use a combination of
estimatedInfo object, CovariateModel object, cell array of strings, and
sbiodose. See sbiofit and sbiofitmixed for illustrated examples.

Description

The PKModelMap object holds information about the dosing type, and defines which
components of a SimBiology model represent the observed response, the dose, and the
estimated parameters.

The PKModelMap class is a subclass of the hgsetget class which is a subclass of the
handle class. For more information on the inherited methods see, hgsetget, and
handle.

Construction

PKModelMap Create PKModelMap object

Method Summary

get (any object) Get object properties
set (any object) Set object properties



2 Methods — Alphabetical List

2-222

Property Summary

See Also

“Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” in the SimBiology User's Guide, PKModelDesign object



 plot(LeastSquaresResults,OptimResults,NLINResults)

2-223

plot(LeastSquaresResults,OptimResults,NLINResults)
Compare simulation results to the training data, creating a time-course subplot for each
group

Syntax

plot(resultsObj)

Description

plot(resultsObj) returns a figure displaying the comparison between simulation
results to the training data, with a time-course subplot for each group.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object,
or vector of results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-224

plot(NLMEResults)
Compare simulation results to the training data, creating a time-course subplot for each
group

Syntax

plot(resultsObj)

plot(resultsObj,'ParameterType',value)

Description

plot(resultsObj) compares simulation results to the training data, creating a time-
course subplot for each group.

plot(resultsObj,'ParameterType',value) uses the individual or population
parameter estimates as specified by value. The two choices for value are
'population' or 'individual' (default).

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results returned by sbiofitmixed.

value — Parameter type
string

Parameter type, specified as a string which must be one of the following: 'individual'
(default) or 'population'.

See Also
NLMEResults object | sbiofitmixed



 plotActualVersusPredicted(LeastSquaresResults,OptimResults,NLINResults)

2-225

plotActualVersusPredicted(LeastSquaresResults,OptimResults,NLINResults)
Compare predictions to actual data, creating a subplot for each response

Syntax

plotActualVersusPredicted(resultsObj)

Description

plotActualVersusPredicted(resultsObj) returns a figure displaying the
comparison between predictions to the actual data, with a subplot for each response.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object,
or vector of results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-226

plotActualVersusPredicted(NLMEResults)
Compare predictions to actual data, creating a subplot for each response

Syntax

plotActualVersusPredicted(resultsObj)

Description

plotActualVersusPredicted(resultsObj) returns a figure displaying the
comparison between predictions to the actual data, with a subplot for each response.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results returned by sbiofitmixed.

See Also
NLMEResults object | sbiofitmixed



 plotResiduals(LeastSquaresResults,OptimResults,NLINResults)

2-227

plotResiduals(LeastSquaresResults,OptimResults,NLINResults)
Plot residuals for each response, using time, group, or prediction as x-axis

Syntax

plotResiduals(resultsObj,type)

Description

plotResiduals(resultsObj,type) plots the residuals for each response, using the
time, group, or predictions as the x-axis as specified by the argument type.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object, NLINResults object, or a
vector of results object which contains estimation results returned by sbiofit.

type — x-axis option for residual plot
string

X-axis option for the residual plot, specified as a string that must be one of the following:
'Time', 'Group', or 'Predictions'.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-228

plotResiduals(NLMEResults)
Plot the residuals for each response, using the time, group, or prediction as the x-axis

Syntax

plotResiduals(resultsObj,type)

Description

plotResiduals(resultsObj,type) plots the residuals for each response, using the
time, group, or predictions as the x-axis as specified by the argument type.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results returned by sbiofitmixed.

type — X-axis option for residual plot
string

X-axis option for the residual plot, specified as a string which must be one of the
following: 'Time', 'Group', or 'Predictions'.

See Also
NLMEResults object | sbiofitmixed



 plotResidualDistribution(LeastSquaresResults,OptimResults,NLINResults)

2-229

plotResidualDistribution(LeastSquaresResults,OptimResults,NLINResults)
Plot the distribution of the residuals

Syntax

plotResidualDistribution(resultsObj)

Description

plotResidualDistribution(resultsObj) plots the distribution of the residuals.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object,
or vector of results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-230

plotResidualDistribution(NLMEResults)
Plot the distribution of the residuals

Syntax

plotResidualDistribution(resultsObj)

Description

plotResidualDistribution(resultsObj) plots the distribution of the residuals.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results from running sbiofitmixed.

See Also
NLMEResults object | sbiofitmixed



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-231

predict(LeastSquaresResults,OptimResults,NLINResults)
Simulate and evaluate fitted SimBiology model

Syntax

[ypred,parameterEstimates]= predict(resultsObj)

[ypred,parameterEstimates]= predict(resultsObj,data,dosing)

Description

[ypred,parameterEstimates]= predict(resultsObj) returns simulation results
ypred and parameter estimates parameterEstimates of a fitted SimBiology model.

[ypred,parameterEstimates]= predict(resultsObj,data,dosing) returns
simulation results ypred and estimated parameter values parameterEstimates
from evaluating the fitted SimBiology model using the specified data and dosing
information.

During simulations, predict uses the parameter values in the
resultsObj.ParameterEstimates property. Use this method when you want
to evaluate the fitted model and predict responses using new data and/or dosing
information.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object

Estimation results, specified as an OptimResults object or NLINResults object,
which contains estimation results returned by sbiofit. It must be a scalar object.

data — Output times or grouped data
vector | cell array of vectors | groupedData object

Output times or grouped data, specified as a vector, or cell array of vectors of output
times, or groupedData object.



2 Methods — Alphabetical List

2-232

If it is a vector of time points, predict simulates the model with new time points using
the parameter estimates from the results object resultsObj.

If it is a cell array of vectors of time points, predict simulates the model n times using
the output times from each time vector, where n is the length of data.

If it is a groupedData object, it must have an independent variable such as Time. It
must also have a group variable if the training data used for fitting has such variable.
You can use a groupedData object to query different combinations of categories if the
resultsObj contains parameter estimates for each category. predict simulates the
model for each group with the specified categories. For instance, suppose you have a set
of parameter estimates for sex category (males versus females), and age category (young
versus old) in your training data. You can use predict to simulate the responses of an
old male (or any other combination) although such patient may not exist in the training
data.

If the resultsObj is from estimating category-specific parameters, data must be a
groupedData object.

Note: If UnitConversion is turned on for the underlying SimBiology model that was
used for fitting and data is a groupedData object, data must specify valid variable
units via data.Properties.VariableUnits property. If it is a numeric vector or cell
array of vectors of time points, predict uses the model’s TimeUnits.

dosing — Dosing information
[] | 2-D matrix of SimBiology dose objects

Dosing information, specified as an empty array [] or 2-D matrix of SimBiology dose
objects (ScheduleDose object or RepeatDose object). It must be consistent with
the original dosing data used with sbiofit, i.e., dose objects in dosing must have the
same TargetName, LagParameterName, or DurationParameterName properties as
those of the original dosing data.

If empty, no doses are applied during simulation. If not empty, the matrix must have
a single row or one row per group in the data data. If it has a single row, the same
doses are applied to all groups during simulation. If it has multiple rows, each row is
applied to a separate group, in the same order as the groups appear in data. Multiple
columns are allowed so that you can apply multiple dose objects to each group. Each
column of doses must reference the same components in the model. Specifically, all



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-233

doses (except for empty doses) in a column must have the same values for TargetName,
DurationParameterName, and LagParameterName. If some groups require more doses
than others, then fill in the matrix with dummy doses that are either default doses or
empty doses.

Note: If UnitConversion is turned on for the underlying SimBiology model that was
used for fitting, dosing must specify valid amount and time units.

Output Arguments

ypred — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in
ypred are the states that were included in the responseMap input argument of
sbiofit as well as any other states listed in the StatesToLog property of the runtime
options (RuntimeOptions) of the SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This is identical to
resultsObj.ParameterEstimates property. The predict method uses these
parameter values during simulation.

Examples

Estimate a Parameter from the Yeast G Protein Model

This example uses the yeast heterotrimeric G protein model and experimental data
reported by [1]. For details about the model, see the Background section in “Parameter
Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G
Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein



2 Methods — Alphabetical List

2-234

Enter the experimental data containing the time course for the fraction of active G
protein, as reported in the reference paper [1].

time = [0;10;30;60;110;210;300;450;600];

GaFracExpt = [0;0.35;0.4;0.36;0.39;0.33;0.24;0.17;0.2];

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);

grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate
which species in the model corresponds to which response variable in the data. In
this example, map the model parameter GaFrac to the experimental data variable
GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be
estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam);

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans = 

    Name     Estimate    StandardError

    _____    ________    _____________

    'kGd'    0.11        3.683e-05    

Suppose you want to simulate the fitted model using different output times than those in
the training data. You can use the predict method to do so.

Create a new variable T with different output times.

T = [0;10;50;80;100;150;300;350;400;450;500;550];



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-235

Use the predict method to simulate the fitted model on the new time points. No dosing
was specified when you first ran sbiofit. Hence, you cannot use any dosing information
with the predict method, and an empty array must be specified as the third input
argument.

ypred = predict(fitResult,T,[]);

Plot the simulated data with the new output times.

sbioplot(ypred)

Expand Run1 and only select GaFrac to display its simulated data.



2 Methods — Alphabetical List

2-236

Estimate category-specific PK parameters

This example shows how to estimate category-specific (such as young versus old, male
versus female) PK parameters using the profile data from multiple individuals using
a two-compartment model. The parameters to estimate are the volumes of central and
peripheral compartment, the clearance, and intercompartmental clearance.

The synthetic data used in this example contains the time course of plasma
concentrations of multiple individuals after a bolus dose (100 mg) measured at different
times for both central and peripheral compartments. It also contains categorical
variables, namely Sex and Age.

clear



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-237

load(fullfile(matlabroot,'examples','simbio','sd5_302RAgeSex.mat'));

Convert the data set to a groupedData object, which is the required data format for the
fitting function sbiofit. A groupedData object allows you to set independent variable
and group variable names (if they exist). Set the units of the ID, Time, CentralConc,
PeripheralConc, Age, and Sex variables. The units are optional and only required
for the UnitConversion feature, which automatically converts matching physical
quantities to one consistent unit system.

gData = groupedData(data);

gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};

The IndependentVariableName and GroupVariableName properties have been
automatically set to the Time and ID variables of the data.

gData.Properties

ans = 

                Description: ''

       VariableDescriptions: {}

              VariableUnits: {''  'hour'  'milligram/liter'  'milligram/liter'  ''  ''}

             DimensionNames: {'Row'  'Variable'}

                   UserData: []

                   RowNames: {}

              VariableNames: {'ID'  'Time'  'CentralConc'  'PeripheralConc'  'Sex'  'Age'}

          GroupVariableName: 'ID'

    IndependentVariableName: 'Time'

For illustration purposes, use the first five individual data for training and the 6th
individual data for testing.

trainData = gData([gData.ID < 6],:);

testData  = gData([gData.ID == 6],:);

Display the response data for each individual in the training set.

sbiotrellis(trainData,'ID','Time',{'CentralConc','PeripheralConc'});



2 Methods — Alphabetical List

2-238

Use the built-in PK library to construct a two-compartment model with infusion
dosing and first-order elimination where the elimination rate depends on the clearance
and volume of the central compartment. Use the configset object to turn on unit
conversion.

pkmd                                    = PKModelDesign;

pkc1                                    = addCompartment(pkmd,'Central');

pkc1.DosingType                         = 'Bolus';

pkc1.EliminationType                    = 'linear-clearance';

pkc1.HasResponseVariable                = true;

pkc2                                    = addCompartment(pkmd,'Peripheral');

model                                   = construct(pkmd);

configset                               = getconfigset(model);

configset.CompileOptions.UnitConversion = true;



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-239

Assume every individual receives a bolus dose of 100 mg at time = 0.

dose             = sbiodose('dose','TargetName','Drug_Central');

dose.StartTime   = 0;

dose.Amount      = 100;

dose.AmountUnits = 'milligram';

dose.TimeUnits   = 'hour';

The data contains measured plasma concentration in the central and peripheral
compartments. Map these variables to the appropriate model components, which are
Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to
estimate. The estimatedInfo object lets you optionally specify parameter transforms,
initial values, and parameter bounds. Since both Central and Peripheral are constrained
to be positive, specify a log-transform for each parameter.

paramsToEstimate    = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};

estimatedParam      = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Use the 'CategoryVariableName' property of the estimatedInfo object to specify
which category to use during fitting. Use 'Sex' as the group to fit for the clearance
Cl_Central and Q12 parameters. Use 'Age' as the group to fit for the Central and
Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';

estimatedParam(2).CategoryVariableName = 'Age';

estimatedParam(3).CategoryVariableName = 'Sex';

estimatedParam(4).CategoryVariableName = 'Sex';

categoryFit = sbiofit(model,trainData,responseMap,estimatedParam,dose)

When fitting by category (or group), sbiofit always returns one results object, not one
for each category level. This is because both male and female individuals are considered
to be part of the same optimization using the same error model and error parameters,
similarly for the young and old individuals.

categoryFit = 

  OptimResults with properties:



2 Methods — Alphabetical List

2-240

                   ExitFlag: 3

                     Output: [1x1 struct]

                  GroupName: []

                       Beta: [8x5 table]

         ParameterEstimates: [20x6 table]

                          J: [40x8x2 double]

                       COVB: [8x8 double]

           CovarianceMatrix: [8x8 double]

                          R: [40x2 double]

                        MSE: 0.1240

                        SSE: 8.9269

                    Weights: []

    EstimatedParameterNames: {'Central'  'Peripheral'  'Q12'  'Cl_Central'}

             ErrorModelInfo: [1x3 table]

         EstimationFunction: 'lsqnonlin'

                 ErrorModel: 'constant'

            ErrorParameters: [1x1 table]

Plot the category-specific estimated results. For the Cl_Central and Q12 parameters,
all males had the same estimates, and similarly for the females. For the Central and
Peripheral parameters, all young individuals had the same estimates, and similarly for
the old individuals.

plot(categoryFit);



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-241

As for testing purposes, simulate the responses of the 6th individual who is an old male.
Since you have estimated one set of parameters for the Age category (young versus old),
and another set for Sex category (male versus female), you can simulate the responses of
an old male even though there is no such individual in the training data.

Use the predict method to simulate the responses. ypred contains simulation data and
paramestim contains parameter estimates used during simulation.

[ypred,paramestim] = predict(categoryFit,testData,dose);

Plot the simulated responses of the old male.

sbioplot(ypred);



2 Methods — Alphabetical List

2-242

The paramestim variable contains the estimated parameters used by the predict
method. The parameter estimates for corresponding categories were obtained from the
categoryFit.ParameterEstimates property. Specifically, Central and Peripheral
parameter estimates are obtained from the Old group, and Q12 and Cl_Central
parameter estimates are obtained from the Male group.

paramestim

paramestim = 

        Name        Estimate    StandardError    Group    CategoryVariableName    CategoryValue

    ____________    ________    _____________    _____    ____________________    _____________

    'Central'        1.1993     0.0050591        6        'Age'                   Old          



 predict(LeastSquaresResults,OptimResults,NLINResults)

2-243

    'Peripheral'     0.5627       0.02908        6        'Age'                   Old          

    'Q12'            1.3119      0.062733        6        'Sex'                   Male         

    'Cl_Central'    0.56631     0.0079784        6        'Sex'                   Male  

Overlay the experimental results on the simulated data.

figure;

plot(testData.Time,testData.CentralConc,'LineStyle','none','Marker','d','MarkerEdgeColor','b');

hold on

plot(testData.Time,testData.PeripheralConc,'LineStyle','none','Marker','d','MarkerEdgeColor','r');

plot(ypred.Time,ypred.Data(:,1),'b');

plot(ypred.Time,ypred.Data(:,2),'r');

hold off

legend({'OBS1(CentralConc)','OBS2(PeripheralConc)',...

        'PRED1(Central.Drug\_Central)','PRED2(Peripheral.Drug\_Peripheral)'});



2 Methods — Alphabetical List

2-244

References

[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
NLINResults object | OptimResults object | sbiofit



 predict(NLMEResults)

2-245

predict(NLMEResults)
Simulate and evaluate fitted SimBiology model

Syntax

[ypred,parameterEstimates] = predict(resultsObj)

[ypred,parameterEstimates] = predict(resultsObj,data,dosing)

[ypred,parameterEstimates] = predict(_,'ParameterType',value)

Description

[ypred,parameterEstimates] = predict(resultsObj) returns simulation
results ypred of the fitted SimBiology model using estimated parameter values
parameterEstimates, which are returned by sbiofitmixed.

[ypred,parameterEstimates] = predict(resultsObj,data,dosing) returns
simulation results ypred from evaluating the fitted SimBiology model using the specified
data and dosing information. The data can be different from the training data that
were used to fit the model.

[ypred,parameterEstimates] = predict(_,'ParameterType',value) returns
simulation results that are simulated using either individual or population parameter
estimates. The two choices for value are 'population' or 'individual' (default).

Tip Use this method to evaluate the fitted model and predict responses using additional
(new) data and/or dosing information.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains nonlinear
mixed-effects estimation results returned by sbiofitmixed. It must be a scalar object.



2 Methods — Alphabetical List

2-246

data — Grouped data or output times
groupedData object | vector | cell array of vectors

Grouped data or output times, specified as a groupedData object, vector, or cell array
of vectors of output times.

If it is a vector of time points, predict simulates the model with new time points using
the individual parameter estimates of the first group from the results object.

If it is a cell array of vectors of time points, predict simulates the model n times using
the output times from each time vector, where n is the length of data. During the
simulation, predict uses the population parameter estimates from the results object.

If data contains new groups, only fixed effects (population parameter estimates of
the results object) are used for these groups. Specifying data as a cell array of vectors
is treated as specifying different groups than in the original data that was used with
sbiofitmixed.

If the mixed-effects model from the original fit (using sbiofitmixed) uses a covariate
model with covariates, the data must be a groupedData object containing covariate
data with the same labels for the covariates (CovariateLabels property) specified in
the original covariate model.

dosing — Dosing information
[] | 2-D matrix of SimBiology dose objects

Dosing information, specified as an empty array [] or 2-D matrix of SimBiology dose
objects (ScheduleDose object or RepeatDose object). It must be consistent with
the original dosing data used with sbiofitmixed, i.e., dose objects in dosing must
have the same TargetName, LagParameterName, or DurationParameterName
properties as those of the original dosing data.

If empty, no doses are applied during simulation. If not empty, the matrix must have
a single row or one row per group in the data data. If it has a single row, the same
doses are applied to all groups during simulation. If it has multiple rows, each row is
applied to a separate group, in the same order as the groups appear in data. Multiple
columns are allowed so that you can apply multiple dose objects to each group. Each
column of doses must reference the same components in the model. Specifically, all
doses (except for empty doses) in a column must have the same values for TargetName,
DurationParameterName, and LagParameterName. If some groups require more doses
than others, then fill in the matrix with dummy doses that are either default doses or
empty doses.



 predict(NLMEResults)

2-247

value — Parameter type
string

Parameter type, specified as 'population' or 'individual' (default). If value
is 'population', the method returns the simulation results using the population
parameter estimates. The estimated parameter values used in simulation are identical
to resultsObj.PopulationParameterEstimates property unless you specify a
new groupedData object data with new covariate data. In this case, the method will
reevaluate the covariate model and this could change the parameter estimates.

If value is 'individual', the method returns the simulation
results using the corresponding group’s parameter values in the
resultsObj.IndividualParameterEstimates property, which includes both fixed
and random effect estimates. If data contains new groups, only fixed effects (population
parameter estimates of the results object) are used for these groups.

Output Arguments

ypred — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in
ypred are the states that were included in the responseMap input argument of
sbiofitmixed as well as any other states listed in the StatesToLog property of the
runtime options (RuntimeOptions) of the SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table.

If 'ParameterType' is 'individual', the estimated parameter values are identical to
the values in the resultsObj.IndividualParameterEstimates property. However,
if the data has new groups, then only population parameter estimates (fixed effects)
are used for these groups, and the corresponding estimated values for these groups are
identical to the resultsObj.PopulationParameterEstimates.

If 'ParameterType' is 'population', the estimated parameter values are identical to
the values in the resultsObj.PopulationParameterEstimates property unless you
specify a new groupedData object data with new covariate data.



2 Methods — Alphabetical List

2-248

See Also
NLMEResults object | sbiofitmixed | sbiosampleerror |
sbiosampleparameters



 random(LeastSquaresResults,OptimResults,NLINResults)

2-249

random(LeastSquaresResults,OptimResults,NLINResults)

Simulate SimBiology model, adding variations by sampling error model

Syntax

[ynew,parameterEstimates] = random(resultsObj)

[ynew,parameterEstimates] = random(resultsObj,data,dosing)

Description

[ynew,parameterEstimates] = random(resultsObj) returns simulation
results ynew with added noise using the error model information specified by
the resultsObj.ErrorModelInfo property and estimated parameter values
parameterEstimates.

[ynew,parameterEstimates] = random(resultsObj,data,dosing) uses the
specified data and dosing information.

Note: The noise is only added to states that are responses which are the states included
in the responseMap input argument when you called sbiofit. If there is a separate
error model for each response, the noise is added to each response separately using the
corresponding error model.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object

Estimation results, specified as an OptimResults object or NLINResults object,
which contains estimation results returned by sbiofit. It must be a scalar object.

data — Grouped data or output times
groupedData object | vector | cell array of vectors



2 Methods — Alphabetical List

2-250

Grouped data or output times, specified as a groupedData object, vector, or cell array
of vectors of output times.

If it is a vector of time points, random simulates the model with new time points using
the parameter estimates from the results object resultsObj.

If it is a cell array of vectors of time points, random simulates the model n times using
the output times from each time vector, where n is the length of data.

If it is a groupedData object, it must have an independent variable such as Time. It
must also have a group variable if the training data used for fitting has such variable.
You can use a groupedData object to query different combinations of categories if the
resultsObj contains parameter estimates for each category. random simulates the
model for each group with the specified categories. For instance, suppose you have a set
of parameter estimates for sex category (males versus females), and age category (young
versus old) in your training data. You can use random to simulate the responses of an old
male (or any other combination) although such patient may not exist in the training data.

If the resultsObj is from estimating category-specific parameters, data must be a
groupedData object.

Note: If UnitConversion is turned on for the underlying SimBiology model that was
used for fitting and data is a groupedData object, data must specify valid variable
units via data.Properties.VariableUnits property. If it is a numeric vector or cell
array of vectors of time points, random uses the model’s TimeUnits.

dosing — Dosing information
[] | 2-D matrix of SimBiology dose objects

Dosing information, specified as an empty array [] or 2-D matrix of SimBiology dose
objects (ScheduleDose object or RepeatDose object). It must be consistent with
the original dosing data used with sbiofit, i.e., dose objects in dosing must have the
same TargetName, LagParameterName, or DurationParameterName properties as
those of the original dosing data.

If empty, no doses are applied during simulation. If not empty, the matrix must have
a single row or one row per group in the data data. If it has a single row, the same
doses are applied to all groups during simulation. If it has multiple rows, each row is
applied to a separate group, in the same order as the groups appear in data. Multiple



 random(LeastSquaresResults,OptimResults,NLINResults)

2-251

columns are allowed so that you can apply multiple dose objects to each group. Each
column of doses must reference the same components in the model. Specifically, all
doses (except for empty doses) in a column must have the same values for TargetName,
DurationParameterName, and LagParameterName. If some groups require more doses
than others, then fill in the matrix with dummy doses that are either default doses or
empty doses.

Note: If UnitConversion is turned on for the underlying SimBiology model that was
used for fitting, dosing must specify valid amount and time units.

Output Arguments

ynew — Simulation results with noise
vector of SimData objects

Simulation results with noise, returned as a vector of SimData objects. The states
reported in ynew are the states that were included in the responseMap input argument
of sbiofit as well as any other states listed in the StatesToLog property of the
runtime options (RuntimeOptions) of the SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This is identical to
resultsObj.ParameterEstimates property.

Examples

Add Noise to Simulation Results of a Fitted SimBiology Model

This example uses the yeast heterotrimeric G protein model and experimental data
reported by [1]. For more details about the model, see the Background section in
“Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast
Heterotrimeric G Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein



2 Methods — Alphabetical List

2-252

Enter the experimental data containing the time course for the fraction of active G
protein, as reported in the reference paper [1].

time = [0 10 30 60 110 210 300 450 600]';

GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);

grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate
which species in the model corresponds to which response variable in the data. In
this example, map the model parameter GaFrac to the experimental data variable
GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be
estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation. Use the name-value pair argument 'ErrorModel' to
specify the error model that adds error to simulation data.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam,'ErrorModel','proportional');

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans = 

    Name     Estimate    StandardError

    _____    ________    _____________

    'kGd'    0.11        0.00064116 

Use the random method to retrieve the simulation data with added noise using the
proportional error model which was specified by sbiofit. Note that the noise is added
only to the response state, that is the GaFrac parameter.

[ynew,paramEstim] = random(fitResult);



 random(LeastSquaresResults,OptimResults,NLINResults)

2-253

Select the simulation data for the GaFrac parameter.

GaFracNew = select(ynew,{'Name','GaFrac'});

Plot the simulation results.

plot(GaFracNew.Time,GaFracNew.Data)

hold on

Plot the experimental data to compare it with the simulated data.

plot(time,GaFracExpt,'Color','k','Marker','o')

legend('GaFracNew','GaFracExpt')



2 Methods — Alphabetical List

2-254

References

[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
NLINResults object | OptimResults object | sbiofit



 random(NLMEResults)

2-255

random(NLMEResults)
Simulate a SimBiology model, adding variations by sampling the error model

Syntax

[ynew,parameterEstimates,randomEffects]= random(resultsObj)

[ynew,parameterEstimates]= random(resultsObj,data,dosing)

[ynew,parameterEstimates,randomEffects]=

random(_,'ParameterType',value)

Description

[ynew,parameterEstimates,randomEffects]= random(resultsObj) returns
simulation results ynew with added noise using the error model information specified
by the resultsObj.ErrorModelInfo property and estimated parameter values
parameterEstimates which are returned by sbiofitmixed.

[ynew,parameterEstimates]= random(resultsObj,data,dosing) uses the
specified data and dosing information.

[ynew,parameterEstimates,randomEffects]=

random(_,'ParameterType',value) adds noise to simulation results that are
simulated using either individual or population parameter estimates. The two choices for
value are 'population' or 'individual' (default).

Note: The noise is only added to states that are responses which are the states included
in the responseMap input argument when you called sbiofitmixed.

Input Arguments

resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation
results returned by sbiofitmixed. It must be a scalar object.



2 Methods — Alphabetical List

2-256

data — Grouped data or output times
groupedData object | vector | cell array of vectors

Grouped data or output times, specified as a groupedData object, vector, or cell array
of vectors of output times.

If it is a vector of time points, random simulates the model with new time points.

If it is a cell array of vectors of time points, random simulates the model n times using
the output times from each time vector, where n is the length of data.

For both cases, new parameter values are calculated using sbiosampleparameters
with the covariate model returned by resultsObj.covariateModel, the fixed
effect estimates (resultsObj.FixedEffects), and random effect covariance matrix
(resultsObj.RandomEffectCovarianceMatrix).

If the mixed-effects model from the original fit (using sbiofitmixed) uses a covariate
model with covariates, the data must be a groupedData object containing covariate
data with the same labels for the covariates (CovariateLabels property) specified in
the original covariate model.

dosing — Dosing information
[] | 2-D matrix of SimBiology dose objects

Dosing information, specified as an empty array [] or 2-D matrix of SimBiology dose
objects (ScheduleDose object or RepeatDose object). It must be consistent with
the original dosing data used with sbiofit, i.e., dose objects in dosing must have the
same TargetName, LagParameterName, or DurationParameterName properties as
those of the original dosing data.

If empty, no doses are applied during simulation. If not empty, the matrix must have a
single row or one row per group in the data. If it has a single row, the same doses are
applied to all groups during simulation. If it has multiple rows, each row is applied to
a separate group, in the same order as the groups appear in data. Multiple columns
are allowed so that you can apply multiple dose objects to each group. Each column
of doses must reference the same components in the model. Specifically, all doses
(except for empty doses) in a column must have the same values for TargetName,
DurationParameterName, and LagParameterName. If some groups require more doses
than others, then fill in the matrix with dummy doses that are either default doses or
empty doses.



 random(NLMEResults)

2-257

value — Parameter type
string

Parameter type, specified as 'population' or 'individual' (default). If value
is 'population', the method returns the simulation results with noise using the
population parameter estimates. The estimated parameter values used in simulation
are identical to resultsObj.PopulationParameterEstimates property unless
you specify a new groupedData object data with new covariate data. In this case,
the method will reevaluate the covariate model and this could change the parameter
estimates.

If value is 'individual', estimated parameter values and random effect values are
resampled by calling sbiosampleparameters with the covariate model (specified by the
data argument or returned by the covariateModel method of resultsObj), the fixed
effect estimates (resultsObj.FixedEffects), and random effect covariance matrix
(resultsObj.RandomEffectCovarianceMatrix). Parameter estimates and random
effects are resampled for all groups.

Output Arguments

ynew — Simulation results with noise
vector of SimData objects

Simulation results with noise, returned as a vector of SimData objects. The states
reported in ynew are the states that were included in the responseMap input argument
of sbiofitmixed as well as any other states listed in the StatesToLog property of the
runtime options (RuntimeOptions) of the SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table.

If you specify the value argument as 'individual', these estimated values will differ
from those values from the original fit since parameter values are recalculated using
sbiosampleparameters.

If 'ParameterType' is 'population', the estimated parameter values are identical
to resultsObj.PopulationParameterEstimates property unless you specify a new
groupedData object data with new covariate data.



2 Methods — Alphabetical List

2-258

randomEffects — Random effect values
table

Random effect values, specified as a table.

See Also
NLMEResults object | sbiofitmixed | sbiosampleerror |
sbiosampleparameters



 Reaction object

2-259

Reaction object
Options for model reactions

Description

The reaction object represents a reaction, which describes a transformation, transport, or
binding process that changes one or more species. Typically, the change is the amount of
a species. For example:

  Creatine + ATP <-> ADP + phosphocreatine

  glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H2O

Spaces are required before and after species names and stoichiometric values.

See “Property Summary” on page 2-260 for links to reaction object property reference
pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.

Constructor Summary

addreaction (model) Create reaction object and add to model
object

Method Summary

addkineticlaw (reaction) Create kinetic law object and add to
reaction object

addproduct (reaction) Add product species object to reaction
object

addreactant (reaction) Add species object as reactant to reaction
object



2 Methods — Alphabetical List

2-260

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

rmproduct (reaction) Remove species object from reaction object
products

rmreactant (reaction) Remove species object from reaction object
reactants

set (any object) Set object properties

Property Summary

See Also

“Definitions and Evaluations of Reactions”, AbstractKineticLaw object, Configset
object, KineticLaw object, Model object, Parameter object, Root object,
Rule object, Species object



 removeconfigset (model)

2-261

removeconfigset (model)
Remove configuration set from model

Syntax

removeconfigset(modelObj, 'NameValue')

removeconfigset(modelObj, configsetObj)

Arguments

modelObj Model object from which to remove the configuration
set.

NameValue Name of the configuration set.
configsetObj Configuration set object that is to be removed from

the model object.

Description

removeconfigset(modelObj, 'NameValue') removes the configset object with
the name NameValue from the SimBiology model object modelObj. A configuration set
object stores simulation-specific information. A SimBiology model can contain multiple
configuration sets with one being active at any given time. The active configuration set
contains the settings that are used during the simulation. modelObj always contains
at least one configuration set object with name configured to 'default'. You cannot
remove the default configuration set from modelObj. If the active configuration set is
removed from modelObj, then the default configuration set will be made active.

removeconfigset(modelObj, configsetObj) removes the configuration set object,
configsetObj, from the SimBiology model, modelObj. The configuration set is not
deleted; if you want to delete configsetObj, use the delete method.

If however, there is no MATLAB variable holding the configset,
removeconfigset(modelObj, 'NameValue') removes the configset from the model
and deletes it.



2 Methods — Alphabetical List

2-262

Examples

1 Create a model object by importing the file oscillator.xml and add a configset.

modelObj  = sbmlimport('oscillator');

configsetObj = addconfigset(modelObj, 'myset');

2 Remove the configset from modelObj by name or alternatively by indexing.

% Remove the configset with name 'myset'.

  removeconfigset(modelObj, 'myset');

         

 % Get all configset objects and remove the second.

  configsetObj = getconfigset(modelObj);

  removeconfigset(modelObj, configsetObj(2));

See Also

addconfigset, getconfigset, setactiveconfigset



 removedose (model)

2-263

removedose (model)

Add dose object to model

Syntax

doseObj2 = removedose(modelObj, 'DoseName')

doseObj2 = removedose(modelObj, doseObj)

Arguments

modelObj Model object from which you remove a dose object.
DoseName Name of the dose object to remove from a model object.

DoseName is the value of the dose object property Name.
doseObj Dose object to remove from a model object.

Outputs

doseObj2 ScheduleDose or RepeatDose object.

Description

doseObj2 = removedose(modelObj, 'DoseName') removes a SimBiology
ScheduleDose or RepeatDose object with the name DoseName from a model object
(modelObj). returns the dose object (doseObj), and assigns [] to the dose object property
Parent.

You can add a removed dose object back to a model object using the method adddose.

doseObj2 = removedose(modelObj, doseObj) removes a SimBiology ScheduleDose
or RepeatDose object doseObj.



2 Methods — Alphabetical List

2-264

Examples

Remove a dose object from a model object.

1 Create model and dose objects, and then add dose to model.

modelObj = sbiomodel('mymodel');

dose1Obj = adddose(modelObj, 'dose1');

2 Remove dose object from model object.

removedose(mymodel, 'dose1');

Get all dose objects from a model object, and then remove the second dose object.

AllDoseObjects = getdose(mymodel);

removedose(mymodel, AllDoseObjects(2));

See Also

Model object methods:

• adddose — add a dose object to a model object
• getdose — get dose information from a model object
• removedose — remove a dose object from a model object

Dose object constructor sbiodose.

ScheduleDose object and RepeatDose object methods:

• copyobj — copy a dose object from one model object to another model object
• get — view properties for a dose object
• set — define or modify properties for a dose object



 removevariant (model)

2-265

removevariant (model)
Remove variant from model

Syntax

variantObj = removevariant(modelObj, 'NameValue')

variantObj = removevariant(modelObj, variantObj)

Arguments

modelObj Specify the model object from which you want to remove the
variant.

variantObj Specify the variant object to return from the model object.

Description

variantObj = removevariant(modelObj, 'NameValue') removes a SimBiology
variant object with the name NameValue from the model object modelObj and returns
the variant object to variantObj. The variant object Parent property is assigned []
(empty).

A SimBiology variant object stores alternate values for properties on a SimBiology model.
For more information on variants, see Variant object.

variantObj = removevariant(modelObj, variantObj) removes a SimBiology
variant object (variantObj) and returns the variant object variantObj.

To view the variants stored on a model object, use the getvariant method. To copy a
variant object to another model, use copyobj. To add a variant object to a SimBiology
model, use the addvariant method.

Examples

1 Create a model containing several variants.



2 Methods — Alphabetical List

2-266

modelObj = sbiomodel('mymodel');

variantObj1 = addvariant(modelObj, 'v1');

variantObj2 = addvariant(modelObj, 'v2');

variantObj3 = addvariant(modelObj, 'v3');

2 Remove a variant object using its name.

removevariant(modelObj, 'v1');

3 Remove a variant object using its index number.

a Get the index number of the variant in the model.

vObjs = getvariant(modelObj)  

SimBiology Variant Array

   Index:  Name:             Active:

   1       v2                false

   2       v3                false

b Remove the variant object.

removevariant(modelObj, vObjs(2));

See Also

addvariant, getvariant



 rename (compartment, parameter, species, reaction)

2-267

rename (compartment, parameter, species, reaction)
Rename object and update expressions

Syntax

rename(Obj, 'NewNameValue')

Arguments

Obj Compartment, parameter, species, or reaction object.
'NewNameValue' Specify the new name.

Description

rename(Obj, 'NewNameValue'), changes the Name property of the object, Obj to
NewNameValue and updates any uses of it in the model such as rules, events, reactions,
variants, and doses to use the new name.

If the new name is already being used by another model component, the new name
will be qualified to ensure that it is unique. For example if you change a species
named A to K, and a parameter with the name K exists, the species will be qualified as
CompartmentName.K to indicate that the reference is to the species. If you are referring
to an object by its qualified name, for example CompartmentName.A and you change
the species name, the reference will contain the qualified name in its updated form, for
example, CompartmentName.K

When you want to change the name of a compartment, parameter, species, or reaction
object, use this method instead of set.

Note: The set method only changes the Name property of the object, except for species
and compartments. The method updates the species or compartment object's Name
property and any reaction strings referring to the species or compartment to use the new
name.



2 Methods — Alphabetical List

2-268

Examples

1 Create a model object that contains a species A in a rule.

m = sbiomodel('cell');

s = addspecies(m, 'A');

r = addrule(m, 'A = 4');

2 Rename the species to Y

rename(s, 'Y');

3 See that the rule expression is now updated.

r

SimBiology Rule Array

Index:    RuleType:            Rule:

1         initialAssignment    Y = 4

See Also

set



 reorder (model, compartment, kinetic law)

2-269

reorder (model, compartment, kinetic law)
Reorder component lists

Syntax

modelObj = reorder(Obj,NewOrder)

Input Arguments

Obj Model, compartment, or kinetic law object.
NewOrder Object vector in the new order. If Obj is a model object,

NewOrder can be an array of compartment, event,
parameter, reaction, rule, variant, or dose objects. If Obj is a
compartment object, NewOrder must be an array of species
objects. If Obj is a kinetic law object, NewOrder must be an
array of parameter objects.

Description

modelObj = reorder(Obj,NewOrder) reorders the component vector modelObj to be
in the order specified.

Use this method to reorder any of the component vectors, such as compartments,
events, parameters, rules, species, doses, and variants. When reordered, the vector of
components must contain the same objects as the original list of objects, though they can
be in a different order.

Examples

Reorder Reactions in SimBiology Model

Import a model.

modelObj = sbmlimport('lotka');



2 Methods — Alphabetical List

2-270

Display reactions in the model.

modelObj.Reactions

SimBiology Reaction Array

   Index:    Reaction:

   1         x + y1 -> 2 y1 + x

   2         y1 + y2 -> 2 y2

   3         y2 -> z 

Reverse the order of reactions in the model.

reorder(modelObj,modelObj.Reactions([3 2 1]));

Display the new order of reactions.

modelObj.Reactions

   SimBiology Reaction Array

   Index:    Reaction:

   1         y2 -> z

   2         y1 + y2 -> 2 y2

   3         x + y1 -> 2 y1 + x

See Also
Compartment object | KineticLaw object | Model object



 RepeatDose object

2-271

RepeatDose object
Define drug dosing protocol

Description

A RepeatDose object defines a series of doses to the amount of a species during a
simulation. The TargetName property of a dose object defines the species that receives
the dose.

Each dose is the same amount, as defined by the Amount property, and given at equally
spaced times, as defined by the Interval property. The RepeatCount property defines
the number of injections in the series, excluding the initial injection. The Rate property
defines how fast each dose is given.

To use a dose object in a simulation you must add the dose object to a model object and
set the Active property of the dose object to true. Set the Active property to true if you
always want the dose to be applied before simulating the model.

When there are multiple active RepeatDose objects on a model and if there are duplicate
specifications for a property value, the last occurrence for the property value in the array
of dose, is used during simulation. You can find out which dose is applied last by looking
at the indices of the variant objects stored on the model.

See “Property Summary” on page 2-352 for links to species property reference pages.
Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.

Constructor Summary

Method Summary

Methods for RepeatDose objects

copyobj (any object) Copy SimBiology object and its children



2 Methods — Alphabetical List

2-272

get (any object) Get object properties
getTable(ScheduleDose,RepeatDose)  

Return data from SimBiology dose object as
table

set (any object) Set object properties
setTable(ScheduleDose,RepeatDose)  

Set dosing information from table to dose
object

Property Summary

Properties for RepeatDose objects

See Also

Model object, ScheduleDose object, sbiodose, sbiosimulate



 resample (SimData)

2-273

resample (SimData)
Resample SimData object array onto new time vector

Syntax

newSimDataObj = resample(simDataObj)

newSimDataObj = resample(simDataObj, timevector)

newSimDataObj = resample(simDataObj, timevector, method)

Arguments

newSimDataObj Resampled SimData object array.
simDataObj SimData object array that you want to resample.
timevector Real numeric array of time points onto which you want to

resample the data.
method Method to use during resampling. Can be one of the following:

• 'interp1q' — Uses the MATLAB function interp1q.
• — To use the MATLAB function interp1, specify one of the

following methods:

• 'nearest'

• 'linear'

• 'spline'

• 'pchip'

• 'cubic'

• 'v5cubic'

• 'zoh' — specifies zero-order hold.

Warning: Note that 'cubic' method will change in a future
release. Use 'pchip' instead.



2 Methods — Alphabetical List

2-274

Description

newSimDataObj = resample(simDataObj) resamples the simulation data contained
in every element of the SimData object array simDataObj onto a common time vector,
producing a new SimData array newSimDataObj. By default, the common time vector is
taken from the element of simDataObj with the earliest stopping time.

newSimDataObj = resample(simDataObj, timevector) resamples the SimData
array simDataObj onto the time vector timevector. timevector must either be a
real numeric array or the empty array []. If you use an empty array, resample uses the
default time vector as described above.

newSimDataObj = resample(simDataObj, timevector, method) uses the
interpolation method specified in method.

If the specified timevector includes time points outside the time interval encompassed
by one or more SimData objects in simDataObj, the resampling will involve
extrapolation and you will see a warning. See the help for the MATLAB function
corresponding to the interpolation method in use for information on how the function
performs the extrapolation.

Examples

Simulating and Resampling Data

1 The project file, radiodecay.sbproj contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay');

simDataObj = sbiosimulate(m1);

2 Resample the data.

newSimDataObj = resample(simDataObj, [1:5], 'linear');

Resampling Data for Ensemble Runs

1 The project file, radiodecay.sbproj, contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace.



 resample (SimData)

2-275

sbioloadproject('radiodecay');

2 Change the solver to use during the simulation and perform an ensemble run.

csObj  = getconfigset(m1);

set(csObj, 'SolverType', 'ssa');

simDataObj = sbioensemblerun(m1, 10);

3 Interpolate the time steps.

newSimDataObj = resample(simDataObj, [1:10], 'linear');

4 View the time steps in the SimData object arrays.

newSimDataObj(1).Time

simDataObj(1).Time

See Also

sbioensemblerun, sbioensemblestats, sbiosimulate, SimData object

MATLAB functions interp1, interp1q



2 Methods — Alphabetical List

2-276

reset (root)
Delete all model objects from root object

Syntax

reset(sbioroot)

Description

reset(sbioroot) deletes all SimBiology model objects contained by the root object.
This call is equivalent to sbioreset.

The root object contains a list of model objects, available units, unit prefixes, and kinetic
laws.

To add a kinetic law to the user-defined library, use the sbioaddtolibrary function. To
add a unit to the user-defined library, use sbiounit followed by sbioaddtolibrary.
To add a unit prefix to the user-defined library, use sbiounitprefix followed by
sbioaddtolibrary.

Examples

1 Query sbioroot, which has two model objects.

sbioroot

   SimBiology Root Contains:

    Models:                           2

    Builtin Abstract Kinetic Laws:    3

    User Abstract Kinetic Laws:       1

    Builtin Units:                    54

    User Units:                       0

    Builtin Unit Prefixes:            13

    User Unit Prefixes:               0

2 Call reset.



 reset (root)

2-277

sbioroot

   SimBiology Root Contains:

    Models:                           0

    Builtin Abstract Kinetic Laws:    3

    User Abstract Kinetic Laws:       1

    Builtin Units:                    54

    User Units:                       0

    Builtin Unit Prefixes:            13

    User Unit Prefixes:               0

See Also

sbioaddtolibrary, sbioreset, sbioroot, sbiounit, sbiounitprefix



2 Methods — Alphabetical List

2-278

rmcontent (variant)

Remove contents from variant object

Syntax

rmcontent(variantObj, contents)

rmcontent(variantObj, idx)

Arguments

variantObj Specify the variant object from which you want to remove data. The
Content property is modified to remove the new data.

contents Specify the data you want to remove from a variant object. Contents
can either be a cell array or an array of cell arrays. A valid cell array
should have the form {'Type', 'Name', 'PropertyName',
PropertyValue}, where PropertyValue is the new value to be applied
for the PropertyName. Valid Type, Name, and PropertyName values are
as follows.

'Type' 'Name' 'PropertyName'

'species' Name of the species. If there are
multiple species in the model with
the same name, specify the species as
[compartmentName.speciesName],
where compartmentName is the name
of the compartment containing the
species.

'InitialAmount'

'parameter' If the parameter scope is a
model, specify the parameter
name. If the parameter
scope is a kinetic law, specify
[reactionName.parameterName].

'Value'

'compartment' Name of the compartment. 'Capacity'



 rmcontent (variant)

2-279

idx Specify the ContentIndex or indices of the data to be removed. To display
the ContentIndex, enter the object name and press Enter.

Description

rmcontent(variantObj, contents) removes the data stored in the variable
contents from the variant object (variantObj).

rmcontent(variantObj, idx) removes the data specified by the indices idx (also
called ContentIndex) from the Content property of the variant object.

Examples

1 Create a model containing three species in one compartment.

modelObj = sbiomodel('mymodel');

compObj = addcompartment(modelObj, 'comp1');

A = addspecies(compObj, 'A');

B = addspecies(compObj, 'B');

C = addspecies(compObj, 'C');

2 Add a variant object that varies the species' InitialAmount property.

variantObj = addvariant(modelObj, 'v1');

addcontent(variantObj, {{'species','A', 'InitialAmount', 5}, ...  

{'species', 'B', 'InitialAmount', 10}, ... 

{ 'species', 'C', 'InitialAmount', 15}});% Display the variant

variantObj

SimBiology Variant - v1 (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:

   1                 species      A                 InitialAmount       5

   2                 species      B                 InitialAmount       10

   3                 species      C                 InitialAmount       15

3 Use the ContentIndex number to remove a species from the Content property of
the variant object.

rmcontent(variantObj, 2);

variantObj

SimBiology Variant - v1 (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:



2 Methods — Alphabetical List

2-280

   1                 species      A                 InitialAmount       5

   2                 species      C                 InitialAmount       15

4 (Alternatively) Remove a species from the contents of the variant object using
detailed reference to the species.
rmcontent(variantObj, {'species','A', 'InitialAmount', 5});

% Display variant object

variantObj

SimBiology Variant - v1 (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:

   1                 species      C                 InitialAmount       15

See Also

addvariant, rmcontent, sbiovariant



 rmproduct (reaction)

2-281

rmproduct (reaction)

Remove species object from reaction object products

Syntax

rmproduct(reactionObj, SpeciesName)

rmproduct(reactionObj, speciesObj)

Arguments

reactionObj Reaction object.
SpeciesName Name for a model object. Enter a species name or a cell array

of species names.
speciesObj Species object. Enter a species object or an array of species

objects.

Description

rmproduct(reactionObj, SpeciesName), in a reaction object (reactionObj),
removes a species object with a specified name (SpeciesName) from the property
Products, removes the species name from the property Reaction, and updates the
property Stoichiometry to exclude the species coefficient.

rmproduct(reactionObj, speciesObj) removes a species object as described above
using a MATLAB variable for a species object.

The species object is not removed from the parent model property Species. If the species
object is no longer used by any reaction, you can use the function delete to remove it
from the parent object.

If one of the species specified does not exist as a product, a warning is returned.



2 Methods — Alphabetical List

2-282

Examples

Example 1

This example shows how to remove a product that was previously added to a reaction.
You can remove the species object using the species name.
modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP -> creatine + ATP + Pi');

rmproduct(reactionObj, 'Pi')

SimBiology Reaction Array

 Index:  Reaction:

  1      Phosphocreatine + ADP -> creatine + ATP

Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'A -> B + C');

reactionObj.Reaction   

 ans =

    A -> B + C

rmproduct(reactionObj, modelObj.Species(2));

reactionObj.Reaction   

  ans =

    A -> C

See Also

rmreactant



 rmreactant (reaction)

2-283

rmreactant (reaction)

Remove species object from reaction object reactants

Syntax

rmreactant(reactionObj, SpeciesName)

rmreactant(reactionObj, speciesObj)

Arguments

reactionObj Reaction object.
SpeciesName Name for a species object. Enter a species name or a cell

array of species names.
speciesObj Species object. Enter a species object or an array of species

objects.

Description

rmreactant(reactionObj, SpeciesName), in a reaction object (reactionObj),
removes a species object with a specified name (SpeciesName) from the property
Reactants, removes the species name from the property Reaction, and updates the
property Stoichiometry to exclude the species coefficient.

rmreactant(reactionObj, speciesObj) removes a species object as described above
using a MATLAB variable for a species object, or a model index for a species object.

The species object is not removed from the parent model property Species. If the species
object is no longer used by any reaction, you can use the method delete to remove it
from the parent object.

If one of the species specified does not exist as a reactant, a warning is returned.



2 Methods — Alphabetical List

2-284

Examples

Example 1

This example shows how to remove a reactant that was added to a reaction by mistake.
You can remove the species object using the species name.
modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP + Pi -> creatine + ATP');

rmreactant(reactionObj, 'Pi')

SimBiology Reaction Array

 Index:    Reaction:

  1        Phosphocreatine + ADP -> creatine + ATP

Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'A -> B + C');

reactionObj.Reaction    

ans =

    A + B -> C

rmreactant(reactionObj, modelObj.Species(1));

reactionObj.Reaction   

 

ans =

    A -> C

See Also

delete, rmproduct



 Root object

2-285

Root object

Hold models, unit libraries, and abstract kinetic law libraries

Description

The SimBiology root object contains a list of the SimBiology model objects and
SimBiology libraries. The components that the libraries contain are: all available units,
unit prefixes, and available abstract kinetic law objects. There are two types of libraries:
one contains components that are built in (BuiltinLibrary), and the other contains
components that are user defined (UserdefinedLibrary).

You can retrieve SimBiology model objects from the SimBiology root object. A SimBiology
model object has its Parent property set to the SimBiology root object.

See “Property Summary” on page 2-286 for links to root object property reference
pages.

Properties define the characteristics of an object. Use the get and set commands to list
object properties and change their values at the command line. You can interactively
change object properties in the SimBiology desktop.

Constructor Summary

Method Summary

copyobj (any object) Copy SimBiology object and its children
get (any object) Get object properties
reset (root) Delete all model objects from root object
set (any object) Set object properties



2 Methods — Alphabetical List

2-286

Property Summary

See Also

AbstractKineticLaw object, Configset object, KineticLaw object, Model
object, Parameter object, Reaction object, Rule object, Species object



 Rule object

2-287

Rule object

Hold rule for species and parameters

Description

The SimBiology rule object represents a rule, which is a mathematical expression
that modifies a species amount or a parameter value. For a description of the types of
SimBiology rules, see RuleType.

See “Property Summary” on page 2-288 for links to rule property reference pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.

Constructor Summary

addrule (model) Create rule object and add to model object

Method Summary

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
set (any object) Set object properties



2 Methods — Alphabetical List

2-288

Property Summary

See Also

“Definitions and Evaluations of Rules”, AbstractKineticLaw object, Configset
object, KineticLaw object, Model object, Parameter object, Reaction
object, Root object, Species object



 summary(LeastSquaresResults,OptimResults,NLINResults)

2-289

summary(LeastSquaresResults,OptimResults,NLINResults)
Plot a summary figure that contains estimated values and estimation statistics

Syntax

summary(resultsObj)

Description

summary(resultsObj) plots a summary figure that contains estimated values and
estimation statistics.

Input Arguments

resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object,
or vector of results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit



2 Methods — Alphabetical List

2-290

ScheduleDose object
Define drug dosing protocol

Description

A ScheduleDose object defines a series of doses to the amount of a species during a
simulation. The TargetName property defines the species that receives the dose.

Each dose can have a different amount, as defined by an amount array in the Amount
property. Each dose can be given at specified times, as defined by a time array in the
Time property. A rate array in the Rate property defines how fast each dose is given.
At each time point in the time array, a dose is given with the corresponding amount and
rate.

To use a dose object in a simulation, you must add the dose object to a model object and
set the Active property of the dose object to true.

When there are multiple active ScheduleDdose objects on a model, and there are
duplicate specifications for a property value, the simulation uses the last occurrence for
the property value in the array of doses. You can find out which dose youapplied last by
looking at the indices of the dose objects stored on the model.

See the “Property Summary” on page 2-352 for links to species property reference
pages. Properties define the characteristics of an object. Use the get command to list
object properties and the set command to change their values at the command line. Use
can graphically change object properties in the graphical user interface

Constructor Summary

Method Summary

Methods for variant objects

copyobj (any object) Copy SimBiology object and its children
get (any object) Get object properties



 ScheduleDose object

2-291

getTable(ScheduleDose,RepeatDose)  
Return data from SimBiology dose object as
table

set (any object) Set object properties
setTable(ScheduleDose,RepeatDose)  

Set dosing information from table to dose
object

Property Summary

Properties for variant objects

See Also

Model object, RepeatDose object, sbiodose, sbiosimulate



2 Methods — Alphabetical List

2-292

select (SimData)

Select data from SimData object

Syntax

[t,x,names] = select(simDataObj, Query)

[Out] = select(simDataObj, Query, 'Format', 'FormatValue')

Arguments

Output Arguments

t An n-by-1 vector of time points.
x An n-by-m data array. t and names label the rows and columns of x

respectively.
names An m-by-1 cell array of names.
   
Out Data returned in the format specified in 'FormatValue', shown

in “Input Arguments” on page 2-292. Depending on the specified
'FormatValue', Out contains one of the following:

• Structure array
• SimData object
• Time series object
• Combined time series object from an array of SimData objects

Input Arguments

simDataObj SimData object array. Enter a variable name for a SimData object.



 select (SimData)

2-293

Query A cell array of arguments consisting of some combination of property
name/property value pairs and/or 'Where' clauses. For a more complete
description of the query syntax, including 'Where' clauses and their
supported condition types, see sbioselect. You can use any of the
metadata fields available in the cells of the DataInfo property of a
SimData object in a query. These include 'Type', 'Name', 'Units',
'Compartment' (species only), or 'Reaction' (parameter only).

FormatValue Choose a format from the following table.

FormatValue Description

'num' Specifies the format that lets you return data in numeric arrays.
This is the default when select is called with multiple output
arguments.

'nummetadata' Specifies the format that lets you return a cell array of metadata
structures in metadata instead of names. The elements of
metadata label the columns of x.

'numqualnames' Specifies the format that lets you return qualified names in
names to resolve ambiguities.

'struct' Specifies the format that lets you return a structure array
holding both data and metadata. This is the default when you use
a single output argument.

'simdata' Specifies the format that lets you return data in a new SimData
object. This is the default format when select is called with zero
or one output argument.

'ts' Specifies the format that lets you return data in time series
objects, creating an individual time series for each state or
column and SimData object in simDataObj.

'tslumped' Specifies the format that lets you return data in time series
objects, combining data from each SimData object into a single
time series.

Description



2 Methods — Alphabetical List

2-294

[t,x,names] = select(simDataObj, Query) returns simulation time and state
data from the SimData object (simDataObj) that matches the query argument Query.

In a SimData object simDataObj, the columns of the data matrix simDataObj.Data
are labeled by the cell array of metadata structures given by simDataObj.DataInfo.
The select method enables you to pick out columns of the data matrix based on their
metadata labels. For example, to extract data for all parameters logged in a SimData
object simDataObj, use the syntax [t, x, names] = select (simDataObj,
{'Type', 'parameter'}]).

[Out] = select(simDataObj, Query, 'Format', 'FormatValue') returns
the data in the specified format. Valid formats are listed in “Input Arguments” on page
2-292.

Examples

This example shows how to extract data of interest from your simulation data with the
select method.

1 The project file radiodecay.sbproj contains a model stored in a variable called
m1. Load m1 into the MATLAB workspace.

sbioloadproject gprotein_norules m1

2 Change the solver to use during the simulation and perform an ensemble run.

csObj  = getconfigset(m1);

set(csObj, 'SolverType', 'ssa');

simDataObj = sbioensemblerun(m1, 10);

3 Select all species data logged in the SimData array sdarray.

[t x n] = select(simDataObj, {'Type','species'});

4 Select data for the parameters with name 'Kd' and return the results in a new
SimData object array.

 newsd = select(simDataObj, {'Type','parameter','name', 'Kd'});

5 This selects all data from simDataObj with a name that matches the pattern 'G'
and returns time series objects.

 ts = select(simDataObj, {'Where','Name','regexp','G'}, ...

                     'Format','ts');



 select (SimData)

2-295

See Also

getdata, sbioselect, sbiosimulate, selectbyname, Simdata object



2 Methods — Alphabetical List

2-296

selectbyname (SimData)
Select data by name from SimData object array

Syntax

[t,x,n] = selectbyname(simDataObj, 'NameValue')

Out = selectbyname(simDataObj, NameValue, 'Format', Format)

Arguments

Output Arguments

t An n-by-1 vector of time points.
x An n-by-m data array. t and names label the rows and columns of x

respectively.
n An m-by-1 cell array of names.
Out Data returned in the format as specified in 'FormatValue', shown

in “Input Arguments” on page 2-296. Depending on the specified
'FormatValue', Out contains one of the following:

• Structure array
• SimData object
• Time series object
• Combined time series object from an array of SimData objects

Input Arguments

simDataObj SimData object array. Enter a variable name for a SimData object.
NameValue Names of the states for which you want to select data from

simDataObj. Must be either a string or a cell array of strings.
Query A cell array of arguments consisting of some combination of property

name/property value pairs and/or 'Where' clauses. For a more



 selectbyname (SimData)

2-297

complete description of the query syntax, including 'Where'
clauses and their supported condition types, see sbioselect.
You can use any of the metadata fields available in the cells of the
DataInfo property of a SimData object. These include 'Type',
'Name', 'Units', 'Compartment' (species only), or 'Reaction'
(parameter only).

FormatValue Choose a format from the following table.

FormatValue Description

'num' Specifies the format that lets you return data in numeric
arrays. This is the default when selectbyname is called
with multiple output arguments.

'nummetadata' Specifies the format that lets you return a cell array of
metadata structures in metadata instead of names. The
elements of metadata label the columns of x.

'numqualnames' Specifies the format that lets you return qualified names in
names to resolve ambiguities.

'struct' Specifies the format that lets you return a structure array
holding both data and metadata. This is the default when
you use a single output argument.

'simdata' Specifies the format that lets you return data in a
new SimData object. This is the default format when
selectbyname is called with zero or one output argument.

'ts' Specifies the format that lets you return data in time series
objects, creating an individual time series for each state or
column and SimData object in simDataObj.

'tslumped' Specifies the format that lets you return data in time series
objects, combining data from each SimData object into a
single time series.

Description

The selectbyname method allows you to select data from a SimData object array by
name. [t,x,n] = selectbyname(simDataObj, 'NameValue') returns time and
state data from the SimData object simDataObj for states with names 'NameValue'.



2 Methods — Alphabetical List

2-298

In a SimData object simDataObj, the names labeling the columns of the data matrix
simDataObj.Data are given by simDataObj.DataNames. A name specified in
'NameValue' can match more than one data column, for example, when simDataObj
contains data for a species and parameter both named 'k'. To resolve ambiguities, use
qualified names in 'NameValue', such as 'CompartmentName.SpeciesName' or
'ReactionName.ParameterName'. selectbyname returns qualified names in the
output argument names when there are ambiguities.

Out = selectbyname(simDataObj, NameValue, 'Format', Format) returns
the data in the specified format. Valid formats are listed in “Input Arguments” on page
2-296.

Examples

Select Specific Species Data from Simulation Results

This example uses the Lotka-Volterra (predator-prey) model described by Gillespie [1].

Load the sample project containing the Lotka-Volterra model m1.

sbioloadproject lotka;

Simulate the model m1.

sd = sbiosimulate(m1);

Plot the simulation results which show the states of all species in the model.

sbioplot(sd);



 selectbyname (SimData)

2-299

Select the simulation data of y1 and y2 species only.

sd2 = selectbyname(sd,{'y1','y2'});

Plot the selected data.

sbioplot(sd2);



2 Methods — Alphabetical List

2-300

See Also

[1] Gillespie D.T. "Exact Stochatic Simulation of Coupled Chemical Reactions," (1977)
The Journal of Physical Chemistry, 81(25), 2340-2361.

getdata, sbioselect, sbiosimulate



 set (any object)

2-301

set (any object)
Set object properties

Syntax

set(Obj, 'PropertyName', PropertyValue)

set(Obj, 'PropertyName1', PropertyValue1, 'PropertyName2',

PropertyValue2...)

Arguments

Obj Abstract kinetic law, compartment, configuration set, event,
kinetic law, model, parameter, PKCompartment, PKData,
PKModelDesign PKModelMap, reaction, rule, SimData, species,
or variant object.

'PropertyName' Name of the property to set.
PropertyValue Specify the value to set. Property values depend on the property

being set. See the reference page for an object property for values
that can be specified.

Description

set(Obj, 'PropertyName', PropertyValue) sets the property 'PropertyName' of
the object Obj, to PropertyValue.

set(Obj, 'PropertyName1', PropertyValue1, 'PropertyName2',

PropertyValue2...) sets the properties 'PropertyName1' and 'PropertyName2'
to PropertyValue1 and PropertyValue2 respectively, and so on in sequence. You can
specify multiple PropertyName, PropertyValue pairs.

When you want to change the name of a compartment, parameter, or species object, use
the rename method instead of set. The rename method allows you to change the name
and update the expressions in which these components are used.



2 Methods — Alphabetical List

2-302

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add parameter object.

parameterObj = addparameter (modelObj, 'kf');

3 Set the ConstantValue property of the parameter object to false and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);

get(parameterObj, 'ConstantValue')

MATLAB returns

ans =

     0

See Also

get , rename, setactiveconfigset



 setactiveconfigset (model)

2-303

setactiveconfigset (model)
Set active configuration set for model object

Syntax

configsetObj = setactiveconfigset(modelObj, 'NameValue')

configsetObj2 = setactiveconfigset(modelObj, configsetObj1)

Description

configsetObj = setactiveconfigset(modelObj, 'NameValue') sets the
configuration set NameValue to be the active configuration set for the model modelObj
and returns to configsetObj.

configsetObj2 = setactiveconfigset(modelObj, configsetObj1) sets the
configset configsetObj1 to be the active configset for modelObj and returns to
configsetObj2. Any change in one of these two configset objects configsetObj1 and
configsetObj2 is reflected in the other. To copy over a configset object from one
model object to another, use the copyobj method.

The active configuration set contains the settings that are be used during a simulation. A
default configuration set is attached to any new model.

Examples

1 Create a model object by importing the oscillator.xml file, and add a Configset
object to the model.

modelObj  = sbmlimport('oscillator');

configsetObj = addconfigset(modelObj, 'myset');

2 Configure the simulation stop criteria by setting the StopTime,
MaximumNumberOfLogs, and MaximumWallClock properties of the Configset
object. Set the stop criteria to a simulation time of 3000 seconds, 50 logs, or a wall
clock time of 10 seconds, whichever comes first.

set(configsetObj, 'StopTime', 3000, 'MaximumNumberOfLogs', 50,...



2 Methods — Alphabetical List

2-304

    'MaximumWallClock', 10)

get(configsetObj)

                        Active: 0

                CompileOptions: [1x1 SimBiology.CompileOptions]

                          Name: 'myset'

                         Notes: ''

                RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

    SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]

                 SolverOptions: [1x1 SimBiology.ODESolverOptions]

                    SolverType: 'ode15s'

                      StopTime: 3000

           MaximumNumberOfLogs: 50

              MaximumWallClock: 10

                     TimeUnits: 'second'

                          Type: 'configset'

3 Set the new Configset object to be active, simulate the model using the new
Configset object, and plot the result.

 setactiveconfigset(modelObj, configsetObj);

[t,x] = sbiosimulate(modelObj);

plot (t,x)

See Also

addconfigset, getconfigset, removeconfigset



 setparameter (kineticlaw)

2-305

setparameter (kineticlaw)

Specify specific parameters in kinetic law object

Syntax

setparameter(kineticlawObj, 'ParameterVariablesValue',

'ParameterVariableNamesValue')

Arguments

ParameterVariableValue Specify the value of the parameter
variable in the kinetic law object.

ParameterVariableNamesValue Specify the parameter name with which
to configure the parameter variable
in the kinetic law object. Determines
parameters in the ReactionRate
equation.

Description

Configure ParameterVariableNames in the kinetic law object.

setparameter(kineticlawObj, 'ParameterVariablesValue',

'ParameterVariableNamesValue') configures the ParameterVariableNames
property of the kinetic law object (kineticlawObj). ParameterVariableValue
corresponds to one of the strings in kineticlawObj ParameterVariables property.
The corresponding element in the kineticlawObjParameterVariableNames
property is configured to ParameterVariableNamesValue. For example, if
ParameterVariables is {'Vm', 'Km'} and ParameterVariablesValue is specified
as Vm, then the first element of the ParameterVariableNames cell array is configured
to ParameterVariableNamesValue.



2 Methods — Alphabetical List

2-306

Examples

Create a model, add a reaction, and then assign the ParameterVariableNames for the
reaction rate equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and

Km) that should be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');

setparameter(kineticlawObj,'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns:

ans = 

    'Va'    'Ka'

See Also

addparameter, getspecies, setspecies



 setspecies (kineticlaw)

2-307

setspecies (kineticlaw)

Specify species in kinetic law object

Syntax

setspecies(kineticlawObj, 'SpeciesVariablesValue',

'SpeciesVariableNamesValue')

Arguments

SpeciesVariablesValue Specify the species variable in the kinetic
law object.

SpeciesVariableNamesValue Specify the species name with which to
configure the species variable in the kinetic
law object. Determines the species in the
ReactionRate equation.

Description

setspecies configures the kinetic law object SpeciesVariableNames property.

setspecies(kineticlawObj, 'SpeciesVariablesValue',

'SpeciesVariableNamesValue') configures the SpeciesVariableNames property
of the kinetic law object, kineticlawObj. SpeciesVariablesValue corresponds
to one of the strings in the SpeciesVariables property of kineticlawObj. The
corresponding element in kineticlawObj SpeciesVariableNames property is
configured to SpeciesVariableNamesValue.

For example, if SpeciesVariables are {'S', 'S1'} and SpeciesVariablesValue
is specified as S1, the first element of the SpeciesVariableNames cell array is
configured to SpeciesVariableNamesValue.



2 Methods — Alphabetical List

2-308

Examples

Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction
rate equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has one species variable (S) that

should be set. To set this variable:

setspecies(kineticlawObj,'S', 'a');

4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns:

ans = 

'a'

See Also

addparameter, getspecies, setparameter



 setTable(ScheduleDose,RepeatDose)

2-309

setTable(ScheduleDose,RepeatDose)
Set dosing information from table to dose object

Syntax

setTable(doseObj,tbl)

Description

setTable(doseObj,tbl) sets the dosing data from a table tbl to a dose object
doseObj.

Input Arguments

doseObj — Dose object
ScheduleDose object | RepeatDose object | array of dose objects

Dose object, specified as a ScheduleDose object or RepeatDose object or array of
these objects.

tbl — Dosing data
table | cell array of tables

Dosing data, specified as a table or cell array of tables. If doseObj is an array of dose
objects, then tbl must be a cell array of tables of the same size as doseObj.

If doseObj is a ScheduleDose object, tbl must have 2 or 3 variables (columns)
representing dose time, amount, and rate (optional). The variable names
(tbl.Properties.VariableNames) must be 'Time', 'Amount', and 'Rate'
(optional), respectively.

If doseObj is a RepeatDose object, tbl must have only one row with 4 or 5 variables
(columns) representing dose start time, amount, interval, repeat count, and rate
(optional). The variable names (tbl.Properties.VariableNames) must be
'StartTime', 'Amount', 'Interval', 'RepeatCount', and 'Rate' (optional),
respectively.



2 Methods — Alphabetical List

2-310

The units of tbl variables (tbl.Properties.VariableUnits), if any, are copied over
to the corresponding property units of doseObj.

Examples

Set a Table of Dosing Data to a RepeatDose Object

Create a table containing dose start time, amount, interval, repeat count, and rate.

StartTime = 5;

Amount = 500;

Interval = 1;

RepeatCount = 3;

Rate = 1; 

tbl = table(StartTime,Amount,Interval,RepeatCount,Rate);

Create a RepeatDose object, and set the dosing information from the table.

rdose = sbiodose('rdose','repeat');

setTable(rdose,tbl);

Set a Table of Dosing Data to a ScheduleDose Object

Create a table containing dose time and amount.

Time = [1 2 3 4 5]';

Amount = [10 15 20 25 30]';

tbl = table(Time,Amount);

Create a ScheduleDose object, and set the dosing information from the table.

sdose = sbiodose('sdose','schedule');

setTable(sdose,tbl);

Set an Array of Dosing Tables to an Array of Dose Objects

Create a table containing dose time and amount.

Time = [1 2 3 4 5]';

Amount = [10 15 20 25 30]';

tbl1 = table(Time,Amount);

Create a table containing dose start time, amount, interval, repeat count, and rate.



 setTable(ScheduleDose,RepeatDose)

2-311

StartTime = 5;

Amount = 500;

Interval = 1;

RepeatCount = 3;

Rate = 1; 

tbl2 = table(StartTime,Amount,Interval,RepeatCount,Rate);

Create a cell array of dose tables.

tblArray = {tbl1,tbl2};

Create ScheduleDose and RepeatDose objects

sdose = sbiodose('sdose','schedule');

rdose = sbiodose('rdose','repeat');

doseArray = [sdose,rdose];

Set the cell array of dose tables to dose objects.

setTable(doseArray,tblArray);

See Also
getTable | RepeatDose object | ScheduleDose object



2 Methods — Alphabetical List

2-312

SimData object

Simulation data storage

Description

The SimBiology SimData object contains simulation data. The output from the
sbiosimulate function, is stored in the SimData object which holds time and state
data as well as metadata, such as the types and names for the logged states or the
configuration set used during simulation.

You can also store data from multiple simulation runs as an array of SimData objects.
Thus, the output of sbioensemblerun is an array of SimData objects. You can use any
SimData method on an array of SimData objects.

You can access the time, data, and metadata stored in the SimData object through the
properties in “Property Summary” on page 2-313. Properties define the characteristics
of an object. Use the get and set commands to list object properties and change their
values at the command line.

Methods you can use to query the SimData object are listed in “Method Summary” on
page 2-312.

Constructor Summary

Method Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
getdata (SimData) Get data from SimData object array
getsensmatrix (SimData) Get 3-D sensitivity matrix from SimData

array



 SimData object

2-313

resample (SimData) Resample SimData object array onto new
time vector

select (SimData) Select data from SimData object
selectbyname (SimData) Select data by name from SimData object

array
set (any object) Set object properties

Property Summary

Examples

Return simulation results to a SimData object and plot the results.

sbioloadproject('radiodecay', 'm1');

simDataObj = sbiosimulate(m1);

sbioplot(simDataObj)

Get simulation data at specific time points using the resample method.

% Load 'radiodecay' and set the initial amount of species 'x'.

sbioloadproject('radiodecay', 'm1');

x = sbioselect(m1, 'Type', 'species', 'Name', 'x');

x.InitialAmount = 100;

% Change the solver type to a stochastic solver.

cs = m1.getconfigset;

cs.SolverType = 'ssa';

% Simulate the model.

simDataObj = sbiosimulate(m1);

% This result could be misinterpreted as containing fractional molecules.

sbioplot(simDataObj);

title('Simulation Results Before Resampling');

%Resample the data using the zero-order hold method to obtain the correct

%number of molecules at intermediate time steps.

newsimDataObj = resample(simDataObj, linspace(0, 10, 1e4), 'zoh');

sbioplot(newsimDataObj);

title('Simulation Results After Resampling');

Initialize a simulation using results from a previous simulation.



2 Methods — Alphabetical List

2-314

% Load 'radiodecay'. 

sbioloadproject('radiodecay', 'm1');

m1.Species

simDataObj = sbiosimulate(m1);

% Use the Data property to get the states at the final time point.

% Data is an m x n array, where m is the number of time steps in 

% the simulation and n is the number of quantities logged.

finaldata = simDataObj.Data(end,:);

% Use the DataInfo property to get names of states.

info = simDataObj.DataInfo;

% Loop through the states (species) and set their initial amounts.

numSpecies = length(info);

for c = 1:numSpecies

compObj = sbioselect(m1,'type','compartment','Name',info{c}.Compartment);

speciesObj = sbioselect(compObj,'type','species','Name',info{c}.Name);

speciesObj.InitialAmount = finaldata(c);

end

% Verify species initial amounts.

m1.Species

See Also

Model object, Parameter object, Reaction object, Root object, Species
object



 SimFunction object

2-315

SimFunction object
Function-like interface to execute SimBiology models

Description

The SimFunction object provides an interface that allows you to execute a SimBiology
model like a function and a workflow to perform parameter scans (in parallel if Parallel
Computing Toolbox is available), Monte Carlo simulations, and scans with multiple or
vectorized doses. Since a SimFunction object can be executed like a function handle, you
can customize it to integrate SimBiology models with other MATLAB products and other
custom analyses (such as visual predictive checks).

Use the createSimFunction method to construct the SimFunction object. SimFunction
objects are immutable once created and automatically accelerated at the first function
execution.

Syntax

If you specified any dosing information when you called createSimFunction to
construct the SimFunction object F, then F has these syntaxes.

simdata = F(phi,t_stop,u,t_output) returns a SimData object simdata
after simulating a SimBiology model using phi, a matrix of parameter values, t_stop,
simulation stop time, u, dosing information, and t_output, output time.

simdata = F(phi,t_stop,u) uses the input arguments phi, t_stop, and u.

If you did not specify any dosing information when you called createSimFunction,
then F has these signatures:

simdata = F(phi,t_stop) returns a SimData object simdata using phi and
t_stop.

simdata = F(phi,t_stop,[],t_output) uses the input arguments phi, t_stop,
empty dosed argument [], and t_output. You must specify u, the dosing information,
as an empty array[] for this signature.



2 Methods — Alphabetical List

2-316

Note: When t_output is empty and t_stop is specified, the simulations report the
solver time points until t_stop. When t_output is specified and t_stop is empty, only
the time points in t_output are reported. When both are specified, the reported time
points are the union of solver time points and the time points in t_output. If the last
t_output is greater than the corresponding t_stop, then simulation proceeds until the
last time point in t_output.

simdata = F(phi,tbl) uses the input arguments phi and tbl. Using this signature
only lets you specify output times as one of the variables of tbl. Any data row in tbl
where all dependent variable columns having NaN values is ignored.

[T,Y] = F(_) returns T, a cell array of numeric vector, and Y, a cell array of 2-D
numeric matrices, using any of the input arguments in the preceding syntaxes.

Input Arguments

phi

Matrix of size S-by-P, where S is the number of simulations to perform and P is
the number of parameters specified in the params argument when you called
createSimFunction to construct F. Each simulation is performed with the parameters
specified in the corresponding row of phi.

When phi is specified as a 1-by-P matrix, then all simulations use the same parameters,
and the number of simulations is determined from the t_stop, u, or t_output
argument in that order.

For example, if phi and t_stop have a single row and u is a matrix of size N-by-
DoseTargets, the number of simulations is determined as N.

t_stop

• Scalar specifying the same stop time for all simulations
• Vector of size N specifying a stop time for each simulation for all N simulations

u

• table of dosing information with two or three variables representing dose time, dose
amount, and dose rate (optional). You must name the table variables as follows.



 SimFunction object

2-317

u.Properties.VariableNames = {'Time','Amount','Rate'};

If UnitConversion is on, specify units for each variable. For instance, you can
specify units as follows.

u.Properties.VariableUnits = {'second','molecule','molecule/second'};

This table can have multiple rows, where each row represents a dose applied to the
dose target at a specified dose time with a specified amount and rate if available.

Note: If you already have a ScheduleDose object, you can get this table by using
the getTable method of the object.

• table with one row and five variables containing RepeatDose data. Dose rate
variable is optional. Name the variables as follows.

u.Properties.VariableNames = {'StartTime','Amount','Rate','Interval','RepeatCount'};

If UnitConversion is on, specify units for each variable. Units for 'RepeatCount'
variable can be empty '' or 'dimensionless'. The unit of the 'Amount' variable
must be dimensionally consistent with that of the target species. For example, if
the unit of target species is in an amount unit (such as mole or molecule), then the
'Amount' variable unit must have the same dimension, i.e., its unit must be an
amount unit and cannot be a mass unit (such as gram or kilogram). The unit for the
'Rate' variable must be dimensionally consistent as well.

u.Properties.VariableUnits = {'second','molecule','molecule/second','second','dimensionless'};

Note: If you already have a RepeatDose object, you can get this table by using the
getTable method of the object.

• Cell array of tables of size 1-by-N, where N is the number of dose targets. Each cell
represents a table as described previously.

• Cell array of tables of size S-by-N, where S is the number of simulations and N is the
number of dose targets. Each cell represents a table. S is equal to the number of rows
in phi.

t_output

• Vector of monotonically increasing output times that is applied to all simulations



2 Methods — Alphabetical List

2-318

• Cell array containing a single time vector that is applied to all simulations
• Cell array of vectors representing output times. The ith cell element provides the

output times for the ith simulation. The number of elements in the cell array must
match the number of rows (simulations) in phi.

tbl

table or dataset that has time and dosing information such as
group labels, independent variable, dependent variable(s), amount(s),
and rate(s). You must name the variables of the table or data set as
'GROUP','TIME','DEPENDENTVAR1','DEPENDENTVAR2',...,'AMOUNT1','RATE1','AMOUNT2','RATE2',....
The rate variable is optional for each dose.

If the dosed argument was empty when creating F, then amount- and rate-related
variables are not required. If it is not empty, the number of amount and rate variables
must match the number of dosed targets or species in dosed. The number of dependent
variables must match the number of columns in phi.

If UnitConversion is on, specify a unit for each variable. The unit of 'Amount'
variable must be dimensionally consistent with that of the target species. See the
description of the input argument u for details.

Output Arguments

simdata

Array of SimData objects that contains results from executing the SimFunction F. The
number of elements in the simdata array is the same as the number of rows in phi. The
number of columns in each element of the simdata array, that is, simdata(i).Data,
is equal to the number of elements in the observed cell array which was specified when
creating F.

T

Cell array containing a numeric vector of size S x 1. S is the number of simulations. The
ith element of T contains the time point from the ith simulation.

Y

Cell array of 2-D numeric matrices. The ith element of Y contains data from the ith

simulation. The number of rows in T{i} is equal to the number of rows in Y{i}.



 SimFunction object

2-319

Constructor Summary

createSimFunction (model) Create SimFunction object

Method Summary

accelerate(SimFunction) Prepare SimFunction object for accelerated
simulations

isaccelerated(SimFunction) Determine if SimFunction object is
accelerated

Property Summary

Parameters table with variables named:

• 'Name'

• 'Value'

• 'Type'

• 'Units' (only if UnitConversion is turned on)

The table contains information about model quantities (species,
compartments, or parameters) that define the inputs of a
SimFunction object. For instance, this table can contain
parameters or species whose values are being scanned by the
SimFunction object. This property is read only.

Observables table with variables named:

• 'Name'

• 'Type'

• 'Units' (only if UnitConversion is turned on)

This table contains information about model quantities (species,
compartments, or parameters) that define the output of a
SimFunction object. This property is read only.

Dosed table containing dosing information with variables named:



2 Methods — Alphabetical List

2-320

• 'TargetName'

• 'TargetDimension' (only if UnitConversion is turned on)
• 'DurationParameterName'

• 'DurationParameterValue'

• 'DurationParameterUnits' (only if UnitConversion is turned
on)

• 'LagParameterName'

• 'LagParameterValue'

• 'LagParameterUnits' (only if UnitConversion is turned on)

Variables related to the lag and duration parameters are included only
when 'LagParameterName' and 'DurationParameterName' are
not empty. This property is read only.

UseParallel Logical. If true and Parallel Computing Toolbox is available,
SimFunction is executed in parallel. This property is read-only.

UnitConversionLogical. If true:

• During the execution of the SimFunction object, phi is assumed
to be in the same units as units for corresponding model quantities
specified in the params argument when the object was created
using the createSimFunction method.

• Time (t_output or t_stop) is assumed to be in the same unit as
the TimeUnits property of the active configset object of the
SimBiology model from which F was created.

• Variables of dose tables (u) must have units specified by setting
u.Properties.VariableUnits to a cell array of appropriate
units. The dimension of the dose target such as an amount
(molecule, mole, etc.) or mass (gram, kilogram, etc.), is stored on
the Dosed property of F.

• The simulation result is in the same units as those specified on the
corresponding quantities in the SimBiology model from which F
was created.

This property is read only.



 SimFunction object

2-321

DependentFilesCell array of strings containing the names of files that the model
depends on. This property is used for deployment. This property is
read only.

Examples

Scan Parameters of the Lotka-Volterra Model

This example shows how to execute different signatures of the SimFunction object to
simulate and scan parameters of the Lotka-Volterra (predator-prey) model described by
Gillespie [1].

Load the sample project containing the model m1.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and
y1 and y2 as the output of the function with no dose.

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f = 

SimFunction

Parameters:

         Name         Value       Type    

    ______________    _____    ___________

    'Reaction1.c1'      10     'parameter'

    'Reaction2.c2'    0.01     'parameter'

Observables: 

    Name      Type   

    ____    _________

    'y1'    'species'

    'y2'    'species'

Dosed: None



2 Methods — Alphabetical List

2-322

Define an input matrix that contains values for each parameter (c1 and c2) for each
simulation. The number of rows indicates the total number of simulations, and each
simulation uses the parameter values specified in each row.

phi = [10 0.01; 10 0.02];

Run simulations until the stop time is 5 and plot the simulation results.

sbioplot(f(phi, 5));

You can also specify a vector of different stop times for each simulation.

t_stop = [3;6];

sbioplot(f(phi, t_stop));



 SimFunction object

2-323

Next, specify the output times as a vector.

t_output = 0:0.1:5;

sbioplot(f(phi,[],[],t_output));



2 Methods — Alphabetical List

2-324

Specify output times as a cell array of vectors.

t_output = {0:0.01:3, 0:0.2:6};

sbioplot(f(phi, [], [], t_output));



 SimFunction object

2-325

Scan Initial Amounts of a Species from a Radioactive Decay Model

This example shows how to scan initial amounts of a species from a radioactive decay

model with the first-order reaction: dz

dt
c x= i , where x and z are species and c is the

forward rate constant.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Create a SimFunction object f to scan initial amounts of species x.

f = createSimFunction(m1,{'x'},{'x','z'},[])



2 Methods — Alphabetical List

2-326

f = 

SimFunction

Parameters:

    Name    Value      Type         Units   

    ____    _____    _________    __________

    'x'     1000     'species'    'molecule'

Observables: 

    Name      Type         Units   

    ____    _________    __________

    'x'     'species'    'molecule'

    'z'     'species'    'molecule'

Dosed: None

Define four different initial amounts of species x for scanning. The number of rows
indicates the total number of simulations, and each simulation uses the parameter value
specified in each row of the vector.

phi = [200; 400; 600; 800];

Run simulations until the stop time is 20 and plot the simulation results.

sbioplot(f(phi, 20))



 SimFunction object

2-327

Simulate a Model and Scan Parameters with Doses

This example shows how to simulate and scan a parameter of a radiodecay model while a
species is being dosed.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Create a SimFunction object f specifying parameter Reaction1.c to be scanned and
species x as a dosed target.



2 Methods — Alphabetical List

2-328

f = createSimFunction(m1,{'Reaction1.c'},{'x','z'},{'x'});

Define a scalar dose of amount 200 molecules given at three time points (5, 10, and 15
seconds).

dosetime = [5 10 15];

dose = [200 200 200];

u = table(dosetime', dose');

u.Properties.VariableNames = {'Time','Amount'};

u.Properties.VariableUnits = {'second','molecule'};

Define the parameter values for Reaction1.c to scan.

phi = [0.1 0.2 0.5]';

Simulate the model for 20 seconds and plot the results.

sbioplot(f(phi,20,u));



 SimFunction object

2-329

You can also specify different dose amounts at different times.

d1 = table(5,100);

d1.Properties.VariableNames = {'Time','Amount'};

d1.Properties.VariableUnits = {'second','molecule'};

d2 = table(10,300);

d2.Properties.VariableNames = {'Time','Amount'};

d2.Properties.VariableUnits = {'second','molecule'};

d3 = table(15,600);

d3.Properties.VariableNames = {'Time','Amount'};



2 Methods — Alphabetical List

2-330

d3.Properties.VariableUnits = {'second','molecule'};

Simulate the model using these doses and plot the results.

sbioplot(f(phi,20,{d1;d2;d3}));

You can also define a cell array of dose tables.

u = cell(3,1);

dosetime = [5 10 15];

dose = [200 200 200];

u{1} = table(dosetime',dose');

u{1}.Properties.VariableNames = {'Time','Amount'};



 SimFunction object

2-331

u{1}.Properties.VariableUnits = {'second','molecule'};

dosetime2 = [2 6 12];

dose2 = [500 500 500];

u{2} = table(dosetime2', dose2');

u{2}.Properties.VariableNames = {'Time','Amount'};

u{2}.Properties.VariableUnits = {'second','molecule'};

dosetime3 = [3 8 18];

dose3 = [100 100 100];

u{3} = table(dosetime3', dose3');

u{3}.Properties.VariableNames = {'Time','Amount'};

u{3}.Properties.VariableUnits = {'second','molecule'};

Simulate the model using the dose tables and plot results.

sbioplot(f(phi,20,u));



2 Methods — Alphabetical List

2-332

References

[1] Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions.
The Journal of Physical Chemistry. 81(25), 2340–2361.

See Also
createSimFunction | sbiosampleerror | sbiosampleparameters |
SimFunctionSensitivity object



 SimFunctionSensitivity object

2-333

SimFunctionSensitivity object

SimFunctionSensitivity object, subclass of SimFunction object

Description

The SimFunctionSensitivity object is a subclass of SimFunction object. It allows
you to compute sensitivity.

Syntax

The SimFunctionSensitivity object shares all syntaxes of the SimFunction object.
It has the following additional syntax.

[T,Y,SensMatrix] = F( ___ ) returns T, a cell array of numeric vector, Y, a cell
array of 2-D numeric matrices, and SensMatrix, a cell array of 3-D numeric matrix
containing calculated sensitivities of model quantities. SensMatrix contains a matrix
of size TimePoints x Outputs x Inputs. TimePoints is the total number of time points,
Outputs is the total number of output factors, and Inputs is the total number of input
factors.

If you specify a single output argument, the object returns an SimData object or array of
SimData objects with sensitivity information.

Properties

The SimFunctionSensitivity object shares all properties of the SimFunction
object. It has the following additional properties.

SensitivityOutputstable with variables named:

• 'Name'

• 'Type'

• 'Units' (only if UnitConversion is turned on)



2 Methods — Alphabetical List

2-334

This table contains information about model quantities (species
or parameters) for which you want to compute the sensitivities.
Sensitivity output factors are the numerators of time-dependent
derivatives described in “Sensitivity Calculation”. This property is
read only.

SensitivityInputstable with variables named:

• 'Name'

• 'Type'

• 'Units' (only if UnitConversion is turned on)

This table contains information about model quantities (species,
compartments, or parameters) with respect to which you want
to compute the sensitivities. Sensitivity input factors are the
denominators of time-dependent derivatives described in “Sensitivity
Calculation”. This property is read only.

SensitivityNormalizationString specifying the normalization method for calculated
sensitivities. The following examples show how sensitivities of
a species x with respect to a parameter k are calculated for each
normalization type.

• 'None' — No normalization.

∂

∂

x t

k

( )

• 'Half' — Normalization relative to the numerator only.

1

x t

x t

k( )

( )Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

• 'Full' — Full dedimensionalization

k

x t

x t

k( )

( )Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃



 SimFunctionSensitivity object

2-335

Examples

Calculate Sensitivities Using SimFunctionSensitivity Object

This example shows how to calculate sensitivities of some species in the Lotka-Volterra
model using the SimFunctionSensitivity object.

Load the sample project.

sbioloadproject lotka;

Define the input parameters.

params = {'Reaction1.c1', 'Reaction2.c2'};

Define the observed species, which are the outputs of simulation.

observables  = {'y1', 'y2'};

Create a SimFunctionSensitivity object. Set the sensitivity output factors to all
species (y1 and y2) specified in the observables argument and input factors to those in
the params argument (c1 and c2) by using the keyword 'all'.

f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')

f = 

SimFunction

Parameters:

         Name         Value       Type    

    ______________    _____    ___________

    'Reaction1.c1'      10     'parameter'

    'Reaction2.c2'    0.01     'parameter'

Observables: 

    Name      Type   

    ____    _________



2 Methods — Alphabetical List

2-336

    'y1'    'species'

    'y2'    'species'

Dosed: None

Sensitivity Input Factors: 

         Name            Type    

    ______________    ___________

    'Reaction1.c1'    'parameter'

    'Reaction2.c2'    'parameter'

Sensitivity Output Factors: 

    Name      Type   

    ____    _________

    'y1'    'species'

    'y2'    'species'

Sensitivity Normalization: 

Full

Calculate sensitivities by executing the object with c1 and c2 set to 10 and 0.1
respectively. Set the output times from 1 to 10. t contains time points, y contains
simulation data, and sensMatrix is the sensitivity matrix containing sensitivities of y1
and y2 with respect to c1 and c2.

[t,y,sensMatrix] = f([10,0.1],[],[],1:10);

Retrieve the sensitivity information at simulation time = 5.

temp = sensMatrix{:};

sensMatrix2 = temp(t{:}==5,:,:);

sensMatrix2 = squeeze(sensMatrix2)

sensMatrix2 =

   35.5735   -5.8617

  -39.7255    5.7080



 SimFunctionSensitivity object

2-337

The rows of sensMatrix2 represent output factors (y1 and y2). The columns represent
the input factors (c1 and c2).

Set the stop time to 15, without specifying the output times. In this case, the output
times are the solver time points by default.

sd = f([10,0.1],15);

Retrieve the calculated sensitivities from the SimData object sd.

[t,y,outputs,inputs] = getsensmatrix(sd);

Plot the sensitivities of species y1 and y2 with respect to c1.

figure;

plot(t,y(:,:,1));

legend(outputs);

title('Sensitivites of species y1 and y2 with respect to parameter c1');

xlabel('Time');

ylabel('Sensitivity');



2 Methods — Alphabetical List

2-338

Plot the sensitivities of species y1 and y2 with respect to c2.

figure;

plot(t,y(:,:,2));

legend(outputs);

title('Sensitivites of species y1 and y2 with respect to parameter c2');

xlabel('Time');

ylabel('Sensitivity');



 SimFunctionSensitivity object

2-339

Alternatively, you can use sbioplot. Expand Run1 to select which simulation or
sensitivity data to display.

sbioplot(sd);



2 Methods — Alphabetical List

2-340

You can also plot the sensitivity matrix using the time integral for the calculated
sensitivities of y1 and y2. The plot indicates y1 and y2 are more sensitive to the
parameter c1 than c2.

[~, in, out] = size(y);

result = zeros(in, out);

for i = 1:in

    for j = 1:out

        result(i,j) = trapz(t(:),abs(y(:,i,j)));

    end

end

figure;

hbar = bar(result);

haxes = hbar(1).Parent;



 SimFunctionSensitivity object

2-341

haxes.XTick = 1:length(outputs);

haxes.XTickLabel = outputs;

legend(inputs,'Location','NorthEastOutside');

ylabel('Sensitivity');

More About
• “Sensitivity Calculation”

See Also
createSimFunction | sbiosampleerror | sbiosampleparameters |
SimFunction object



2 Methods — Alphabetical List

2-342

simulate
Class: SimBiology.export.Model

Simulate exported SimBiology model

Syntax

[t,x,names] = simulate(model)

[t,x,names] = simulate(model,initialValues)

[t,x,names] = simulate(model,initialValues,doses)

simDataObj = simulate( ___ )

Description

[t,x,names] = simulate(model) simulates a model, using the default initial values
specified by model.InitialValues (which are always equal to the InitialValue
property on the corresponding ValueInfo object). simulate returns:

• t, time samples.
• x, simulation data that contain variation in the quantity of states over time.
• names, column labels of simulation data x.

You can set additional simulation options using the property
SimBiology.export.Model.SimulationOptions.

[t,x,names] = simulate(model,initialValues) simulates a model, using the
values specified in initialValues as the initial values of the simulation.

[t,x,names] = simulate(model,initialValues,doses) simulates the model,
using the specified initial values and doses.

simDataObj = simulate( ___ ) returns simulation data in a SimData object
simDataObj using any of the input arguments in the previous syntaxes. The
simDataObj contains time and state data, as well as metadata, such as the types
and names for the reported states. You can access the time, data, and names stores
in simDataObj using the properties simDataObj.Time, simDataObj.Data, and
simDataObj.DataNames, respectively.



 simulate

2-343

Input Arguments

model

SimBiology.export.Model object.

initialValues

Vector of values for simulate to use as the initial values of the simulation.
initialValues must have the same number of elements as model.InitialValues.

Default: Values specified in model.InitialValues.

doses

Vector of dose objects specifying the doses used for simulation. The input dose objects
must be a subset of the doses in the exported model, as returned by getdose.

Default: All dose objects in the exported model.

Output Arguments

t

n-by-1 vector of time samples from the simulation, where n is the number of time
samples.

x

n-by-m matrix of simulation data, where n is the number of time samples and m is the
number of states logged during the simulation. Each column of x describes the variation
in the quantity of a state over time.

names

m-by-1 cell array of strings with names labeling the rows and columns of x, respectively.

simDataObj

SimData object containing simulation time and state data, as well as metadata, such
as the types and names for the reported states.



2 Methods — Alphabetical List

2-344

Examples

Simulate an Exported SimBiology Model

Load a sample SimBiology model object, and select the species y1 and y2 for simulation.

modelObj = sbmlimport('lotka');

modelObj.getconfigset.RuntimeOptions.StatesToLog = ...

       sbioselect(modelObj,'Name',{'y1','y2'});

Export the model object.

em = export(modelObj);

Simulate the exported model.

[t,y] = simulate(em);

figure()

plot(t,y)



 simulate

2-345

Modify the initial conditions, and simulate again.

xIndex = em.getIndex('x');

em.InitialValues(xIndex) = em.InitialValues(xIndex)*1.1;

[t,y] = simulate(em);

figure()

plot(t,y)

• “PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
• “Deploy a SimBiology Model”

See Also
export | SimBiology.export.Model | SimBiology.export.Model.getdose |
SimBiology.export.SimulationOptions | SimBiology.export.ValueInfo | SimData
object



2 Methods — Alphabetical List

2-346

Species object
Options for compartment species

Description

The SimBiology species object represents a species, which is a chemical or entity
that participates in reactions, for example, DNA, ATP, Pi, creatine, G-Protein, or
Mitogen-Activated Protein Kinase (MAPK). Species amounts can vary or remain
constant during a simulation.

To add species that participate in reactions, add the reaction to the model. The process
of adding the reaction to the model creates a compartment object (unnamed) and the
necessary species objects.

Alternatively, create and add a species object to a compartment object, using the
addspecies method at the command line.

When you use the SimBiology desktop to create a new model, it adds an empty
compartment (unnamed), to which you can add species.

See “Property Summary” on page 2-347 for links to species property reference pages.
Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.

Constructor Summary

addspecies (model, compartment)  
Create species object and add to
compartment object within model object

Method Summary

Methods for species objects



 Species object

2-347

copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
rename (compartment, parameter, species,
reaction)

 
Rename object and update expressions

set (any object) Set object properties

Property Summary

Properties for species objects

See Also

Compartment object, Configset object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object



2 Methods — Alphabetical List

2-348

Unit object
Hold information about user-defined unit

Description
The SimBiology unit object holds information about user-defined units. To create a unit,
create the unit object and add the unit to the library using the sbioaddtolibrary
function.

Use the unit object property Composition to specify the composition of your units. See
“Property Summary” on page 2-348 for links to unit object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change unit object properties in the SimBiology desktop, using the Library Explorer. For
more information, see “What Are SimBiology Libraries?”.

Constructor Summary

Method Summary
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
set (any object) Set object properties

Property Summary

See Also
AbstractKineticLaw object, KineticLaw object, Model object, Parameter
object, Reaction object, Root object, Rule object, Species object,
UnitPrefix object



 UnitPrefix object

2-349

UnitPrefix object

Hold information about user-defined unit prefix

Description

The SimBiology unit prefix object holds information about user-defined unit prefixes. To
create a unit prefix, create the unit prefix object and add the unit prefix to the library
using the sbioaddtolibrary function.

Use the unit prefix object property Exponent, to specify the exponent of your unit
prefix. See “Property Summary” on page 2-350 for links to unit prefix object property
reference pages.

Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change unit prefix object properties in the SimBiology desktop, using the Library
Explorer. For more information, see “What Are SimBiology Libraries?”.

Constructor Summary

Method Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
set (any object) Set object properties



2 Methods — Alphabetical List

2-350

Property Summary

See Also

AbstractKineticLaw object, KineticLaw object, Model object, Parameter
object, Reaction object, Root object, Rule object, Species object, Unit
object



 Variant object

2-351

Variant object
Store alternate component values

Description

The SimBiology variant object stores the names and values of model components and
allows you to use the values stored in a variant object as the alternate value to be applied
during a simulation. You can store values for species InitialAmount, parameter Value,
and compartment Capacity in a variant object. Simulating using a variant does not
alter the model component values. The values specified in the variant temporarily apply
during simulation.

Using one or more variant objects associated with a model allows you to evaluate model
behavior during simulation, with different values for the various model components
without having to search and replace these values, or having to create additional models
with these values. If you determine that the values in a variant object accurately define
your model, you can permanently replace the values in your model with the values stored
in the variant object, using the commit method.

To use a variant in a simulation you must add the variant object to the model object and
set the Active property of the variant to true. Set the Active property to true if you
always want the variant to be applied before simulating the model. You can also enter
the variant object as an argument to sbiosimulate; this applies the variant only for the
current simulation and supersedes any active variant objects on the model.

When there are multiple active variant objects on a model, if there are duplicate
specifications for a property's value, the last occurrence for the property value in the
array of variants, is used during simulation. You can find out which variant is applied
last by looking at the indices of the variant objects stored on the model. Similarly, in the
Content property, if there are duplicate specifications for a property's value, the last
occurrence for the property in the Content property, is used during simulation.

Use the addcontent method to append contents to a variant object.

See “Property Summary” on page 2-352 for links to species property reference pages.
Properties define the characteristics of an object. Use the get and set commands to
list object properties and change their values at the command line. You can graphically
change object properties in the graphical user interface.



2 Methods — Alphabetical List

2-352

Constructor Summary

Method Summary

Methods for variant objects

addcontent (variant) Append content to variant object
commit (variant) Commit variant contents to model
copyobj (any object) Copy SimBiology object and its children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology object
get (any object) Get object properties
rmcontent (variant) Remove contents from variant object
set (any object) Set object properties
verify (model, variant) Validate and verify SimBiology model

Property Summary

Properties for variant objects

See Also

Compartment object, Configset object, Model object, Parameter object,
Species object

sbiosimulate



 verify (model, variant)

2-353

verify (model, variant)
Validate and verify SimBiology model

Syntax

verify(modelObj)

verify(modelObj,optionObj)

verify(modelObj,csObj,dvObj)

verify(modelObj,csObj,variantObj,doseObj)

Description

verify(modelObj) performs checks on a model object modelObj to verify that you
can simulate the model. This method generates stacked errors and warnings if it finds
any problems. To see the entire list of errors and warnings, use sbiolasterror
and sbiolastwarning. The verify method uses the active configuration set for
verification.

verify(modelObj,optionObj) verifies a model object modelObj while using an
option object specified by optionObj as one of the following:

• Configset object

• Variant object

• ScheduleDose object

• RepeatDose object

• Array of doses or variants

verify(modelObj,csObj,dvObj) verifies a model object modelObj while using a
configset object csObj and dose, variant, or an array of doses or variants specified by
dvObj.

verify(modelObj,csObj,variantObj,doseObj) verifies a model object modelObj
while using a configset object csObj, variant object or variant array specified by
variantObj and dose object or dose array specified by doseObj.



2 Methods — Alphabetical List

2-354

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

optionObj — Option object
configset object | variant object or array of variant objects | dose object or array of dose
objects

Option object, specified as a configset object , variant object , an array of
variant objects, ScheduleDose object , RepeatDose object , or an array of dose
objects.

csObj — Configuration set object
configset object

Configuration set object, specified as a configset object that stores simulation-
specific information.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects

Dose or variant object, specified as a ScheduleDose object , RepeatDose object ,
an array of dose objects, variant object , or an array of variant objects.

• When dvObj is a dose object, verify uses the specified dose object as well as any
active variant objects if available.

• When dvObj is a variant object, verify uses the specified variant object as well as
any active dose objects if available.

variantObj — Variant object
variant object or array of variant objects

Variant object, specified as a variant object or an array of variant objects.

doseObj — Dose object
dose object or array of dose objects

Dose object, specified as a ScheduleDose object , RepeatDose object , or an array
of dose objects. A dose object defines additions that are made to species amounts or
parameter values.



 verify (model, variant)

2-355

Examples

Verify a SimBiology Model while Using a User-Defined Configset Object

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = addconfigset(m1,'newStopTimeConfigSet');

csObj.StopTime = 15;

Verify the model while using the configset object.

verify(m1,csObj);

After verification, check the latest errors and warnings if there is any.

sbiolasterror

ans =

     []

sbiolastwarning

ans =

     []

Simulate the model.

sim = sbiosimulate(m1,csObj);

sbioplot(sim)



2 Methods — Alphabetical List

2-356

Verify a SimBiology Model while Using Configset and Dose Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(m1,'default');

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');

dObj.Amount = 100;

dObj.AmountUnits = 'molecule';

dObj.TimeUnits = 'second';

dObj.Time = 2;

dObj.TargetName = 'unnamed.x';

Verify the model while using the default configset object and added dose object.

verify(m1,defaultConfigSet,dObj);

After verification, check the latest errors and warnings if there is any.

sbiolasterror



 verify (model, variant)

2-357

ans =

     []

sbiolastwarning

ans =

     []

Simulate the model using the same configset and dose objects.

sim = sbiosimulate(m1,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);



2 Methods — Alphabetical List

2-358

Verify a SimBiology Model while Using Configset, Dose, and Variant Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = m1.addconfigset('newStopTimeConfigSet');

csObj.StopTime = 15;

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');



 verify (model, variant)

2-359

dObj.Amount = 100;

dObj.AmountUnits = 'molecule';

dObj.TimeUnits = 'second';

dObj.Time = 2;

dObj.TargetName = 'unnamed.x';

Add a variant of species x using a different initial amount of 500 molecules.

vObj = addvariant(m1,'v1');

addcontent(vObj,{'species','x','InitialAmount',500});

Verify the model while using the configset, dose, and variant objects. Note that the order
of arguments should be as described.

verify(m1,csObj,vObj,dObj);

After verification, check the latest errors and warnings if there is any.

sbiolasterror

ans =

     []

sbiolastwarning

ans =

     []

Simulate the model using the same configset, variant, and dose objects.

sim = sbiosimulate(m1,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);



2 Methods — Alphabetical List

2-360

See Also

sbiolasterror, sbiolastwarning



 verify (covmodel)

2-361

verify (covmodel)
Check covariate model for errors

Syntax

verify(CovModelObj)

Description

verify(CovModelObj) verifies that the following are true about the Expression
(CovariateModel) property of CovModelObj, a CovariateModel object:

• The expression strings are valid MATLAB code.
• Each expression string is linear with a transformation.
• There is exactly one expression string for each parameter.
• In each expression string, a covariate is used in at most one term.
• In each expression string, there is at most one random effect (eta)
• Fixed effect (theta) and random effect (eta) names are unique within and across

expression strings. That is, each covariate has its own fixed effect.

If the previous requirements are true, then verify returns nothing.

More About
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”

See Also
construct | PKModelDesign object | CovariateModel object | Expression
(CovariateModel)





3

Properties — Alphabetical List



3 Properties — Alphabetical List

3-2

AbsoluteTolerance
Absolute error tolerance applied to state value during simulation

Description

AbsoluteTolerance is a property of a SolverOptions object, which is a property of
a Configset object. It is available for the ode solvers (ode15s, ode23t, ode45, and
sundials).

SimBiology uses AbsoluteTolerance to determine the largest allowable absolute error
at any step in a simulation. How the software uses AbsoluteTolerance to determine
this error depends on whether the AbsoluteToleranceScaling property is enabled.

For details, see “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

Characteristics

Applies to Object: SolverOptions
Data type double

Data values Positive scalar. Default is 1e-6.
Access Read/write

Examples

This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'AbsoluteTolerance', 1.0e-8);

get(configsetObj.SolverOptions, 'AbsoluteTolerance')



 AbsoluteTolerance

3-3

ans =

  1.0000e-008

See Also

AbsoluteToleranceScaling, AbsoluteToleranceStepSize, RelativeTolerance,
MassUnits, AmountUnits, Configset object

More About
• “Model Simulation”
• “Choosing a Simulation Solver”
• “Ordinary Differential Equations”



3 Properties — Alphabetical List

3-4

AbsoluteToleranceScaling
Control scaling of absolute error tolerance during simulation

Description

AbsoluteToleranceScaling is a property of a SolverOptions object, which is a
property of a Configset object. It is available for the ode solvers (ode15s, ode23t,
ode45, and sundials).

AbsoluteToleranceScaling controls how the software determines the largest
allowable absolute error at any step in a simulation. For details, see “Selecting Absolute
Tolerance and Relative Tolerance for Simulation”.

Characteristics

Applies to Object: SolverOptions
Data type logical

Data values 1, 0, true, or false. Default is true.
Access Read/write

See Also

AbsoluteTolerance, AbsoluteToleranceStepSize, RelativeTolerance



 AbsoluteToleranceStepSize

3-5

AbsoluteToleranceStepSize
Initial guess for time step size for scaling of absolute error tolerance

Description

AbsoluteToleranceStepSize is a property of a SolverOptions object, which is a
property of a Configset object. It is available for the ode solvers (ode15s, ode23t,
ode45, and sundials).

When the AbsoluteToleranceScaling property is enabled, you can set the
AbsoluteToleranceStepSize property to specify the initial guess for time step
size for scaling. For details, “Selecting Absolute Tolerance and Relative Tolerance for
Simulation”.

Tip Use AbsoluteToleranceStepSize when a simulation is unsuccessful and
generates numerically unstable solutions, and other corrective actions such as checking
the model’s kinetics do not work. You might encounter unstable solutions if you have
very stiff systems in which state values change rapidly at the beginning of a simulation.
To solve this, iteratively decrease AbsoluteToleranceStepSize and simulate to find
the optimal setting. As a starting point, try setting this property to AbsoluteTolerance
* StopTime * 0.1.

Characteristics

Applies to Object: SolverOptions
Data type double

Data values Scalar in units specified by TimeUnits property. Default is [].
Access Read/write

See Also

AbsoluteTolerance, AbsoluteToleranceScaling, RelativeTolerance



3 Properties — Alphabetical List

3-6

Active
Indicate object in use during simulation

Description
The Active property indicates whether a simulation is using a SimBiology object. A
SimBiology model is organized into a hierarchical group of objects. Use the Active
property to include or exclude objects during a simulation.

• Configuration set — For the configset object, use the method
setactiveconfigset to set the object Active property to true.

• Event, Reaction, or Rule — When an event, a reaction, or rule object Active
property is set to false, the simulation does not include the event, reaction, or rule.
This is a convenient way to test a model with and without a reaction or rule.

• Variant — Set the Active property to true if you always want the variant to be
applied before simulating the model. You can also pass the variant object as an
argument to sbiosimulate; this applies the variant only for the current simulation.
For more information on using the Active property for variants, see Variant
object.

Characteristics

Applies to Objects: configset, event, reaction, RepeatDose, rule,
ScheduleDose, variant

Data type boolean

Data values true or false. The default value for events, reactions, and
rules is true. For the configset object, default is true. For
added configset object, the default is false. For variants, the
default is false.

Access Read/write

Examples
1 Create a model object.



 Active

3-7

modelObj = sbiomodel ('my_model');

2 Add a reaction object and verify that the Active property setting is 'true' or 1.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

get (reactionObj, 'Active')

MATLAB returns:

ans =

1

3 Set the Active property to 'false' and verify.

set (reactionObj, 'Active', false);

get (reactionObj, 'Active')

MATLAB returns:

ans =

0

See Also

addconfigset, addreaction, addrule, Event object, Reaction
object,RepeatDose object, Rule object , ScheduleDose object, Variant
object,



3 Properties — Alphabetical List

3-8

Amount
Amount of dose

Description

Amount is a property of a RepeatDose or ScheduleDose object. It defines an increase in
the amount of a SimBiology species that receives a dose.

A RepeatDose object defines a series of doses. Each dose is the same amount, as defined
by the Amount property, and given at equally spaced times, as defined by the Interval
property. The number of injections in the series, excluding the initial injection, is defined
by the RepeatCount property, and the Rate property defines how fast each dose is
given.

A ScheduleDose object defines a series of doses. Each dose can have a different amount,
as defined by an amount array in the Amount property, and given at specified times, as
defined by a time array in the Time property. A rate array in the Rate property defines
how fast each dose is given. At each time point in the time array, a dose is given with the
corresponding amount and rate.

Characteristics

Applies to Object: RepeatDose, ScheduleDose
Data type double (RepeatDose) or double array (ScheduleDose)
Data values Nonnegative value. Default is 0 (RepeatDose) or []

(ScheduleDose)
Access Read/write

See Also

ScheduleDose object and RepeatDose object



 AmountUnits

3-9

AmountUnits
Dose amount units

Description

AmountUnits is a property of a RepeatDose or ScheduleDose object. This property
defines units for the Amount property.

If the TargetName property defines a species, then AmountUnits for a dose must be a
chemical amount (for example, milligram, mole, or molecule), not a concentration. To get
a list of the defined units in the library, use the sbioshowunits function. To add a user-
defined unit to the list, see sbioaddtolibrary.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose
Data type string

Data values Units from library with dimensions of amount. Default =
'' (empty)

Access Read/write

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to



3 Properties — Alphabetical List

3-10

consistent units. Hence, you must specify consistent units, and no unit strings can
be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

See Also

ScheduleDose object and RepeatDose object



 AmountUnits

3-11

AmountUnits

Amount unit used internally during simulation when UnitConversion is on

Description

This property defines the amount unit that SimBiology uses internally during model
simulation when UnitConversion is on. You can set this to any string representing
an amount unit such as molecule, mole, or mole with any valid prefix. It can also
be a custom unit if it is consistent with amount as its dimension. The default is
<automatic>, which means SimBiology automatically selects an amount unit for
simulation. SimBiology examines the units on all of the states and selects an amount
unit such that AbsoluteTolerance of the states in amount, or amount per volume
is at least as stringent as the simulation absolute tolerance multiplied by the smallest
amount unit. This stringency is relaxed appropriately for states that become large when
AbsoluteToleranceScaling is on.

Note: It is recommended that you use the default unit (<automatic>) or choose units for
states such that the simulated values are neither too large (greater than 106) or too small
(less than 10-6).

However, for some edge cases, you may need to change AmountUnits. Suppose you have
a model with a state that takes on values around 10-12 moles for the entire simulation,
and you need to use mole as its unit. Then it may be appropriate to set AmountUnits
to picomole. In this case, the internal simulation values would be around 1, instead of
around 10-12 as in the default case. AbsoluteTolerance of the simulation is determined
using this internal value. Thus by choosing picomole as the amount unit, you effectively
reduce the size of AbsoluteTolerance. Changing the AmountUnits property is closely
related to changing AbsoluteTolerance when considering the effects on simulation
results.

Even when using the default unit, it may be still necessary to change
AbsoluteTolerance. For details, see “Selecting Absolute Tolerance and Relative
Tolerance for Simulation”.

If you need to recover the simulation behavior from releases prior to R2015b:



3 Properties — Alphabetical List

3-12

• Set the AmountUnit to mole. However, if the model has quantity units in molecule,
set the unit to molecule instead.

• Set the MassUnits to kilogram.

Tip If you have a custom function and UnitConversion is on (whether or not you are
using the default unit <automatic>), follow the recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not
already dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in
hour and y is the concentration of a species in mole/liter. When you use this function
in your model to define a repeated assignment rule for instance, define it as: s1 =
f(time/t0)*s0, where time is the simulation time, t0 is a parameter defined as
1.0 hour, s0 is a parameter defined as 1.0 mole/liter, and s1 is the concentration of
a species in mole/liter. Note that time and s1 do not have to be in the same units as
t0 and s0, but they must be dimensionally consistent. For example, the time and s1
units can be set to minute and picomole/liter, respectively.

Characteristics

Applies to Object: Configset
Data type string

Data values String specifying any amount unit. The default is <automatic>.
Access Read/write for properties of Configset

See Also

Configset object, MassUnits



 Annotation

3-13

Annotation
Store link to URL or file

Note: The Annotation property will be removed in a future release. Use the Notes
property instead.

Description

The Annotation property stores the URL or file name linking to information about a
model.

Characteristics

Applies to SimBiology objects: abstract kinetic law, configuration
set, compartment, event, kinetic law, model, parameter,
reaction, RepeatDose, rule, ScheduleDose, species, or unit

Data type char string, URL
Data values Character string with a directory path and filename or a

URL
Access Read/write

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Set the annotation for a model object.

set (modelObj, 'annotation', 'www.reactome.org')

3 Verify the assignment.



3 Properties — Alphabetical List

3-14

get (modelObj, 'annotation')

MATLAB returns:

ans =

www.reactome.org

See Also

addkineticlaw, addparameter, addreaction, addrule, addspecies, sbiomodel,
sbioroot, sbiounit, sbiounitprefix, RepeatDose object, ScheduleDose
object



 BoundaryCondition

3-15

BoundaryCondition
Indicate species boundary condition

Description

The BoundaryCondition property indicates whether a species object has a boundary
condition.

When the BoundaryCondition of a species is false (default), the species quantity is
modified by reactions, rules, events, and doses. If the BoundaryCondition is true, the
species quantity is modified by rules, events, and doses, but not by reactions.

Set the BoundaryCondition to true when you want the species to participate in a
reaction, but do not want any reactions to modify its quantity.

All SimBiology species are state variables regardless of the BoundaryCondition or
ConstantAmount property.

More Information

Consider the following two use cases of boundary conditions:

• Modeling receptor-ligand interactions that affect the rate of change of the receptor
but not the ligand. For example, in response to hormone, steroid receptors such
as the glucocorticoid receptor (GR) translocate from the cytoplasm (cyt) to
the nucleus (nuc). The hsp90/ hsp70 chaperone complex directs this nuclear
translocation [Pratt 2004]. The natural ligand for GR is cortisol; the synthetic
hormone dexamethasone (dex) is used in place of cortisol in experimental systems.
In this system dexamethasone participates in the reaction but the quantity of
dexamethasone in the cell is regulated using a rule. To simply model translocation of
GR you could use the following reactions:

Formation of the chaperone-receptor complex,

Hsp90_complex + GR_cyt -> Hsp90_complex:GR_cyt

In response to the synthetic hormone dexamethasone (dex), GR moves from the
cytoplasm to the nucleus.



3 Properties — Alphabetical List

3-16

Hsp90_complex:GR_cyt + dex -> Hsp90_complex + GR_nuc + dex

For dex,

 BoundaryCondition = true; ConstantAmount = false

In this example dex is modeled as a boundary condition with a rule to regulate the
rate of change of dex in the system. Here, the quantity of dex is not determined by
the rate of the second reaction but by a rate rule such as

ddex/dt = 0.001 

which is specified in the SimBiology software as

dex = 0.001

• Modeling the role of nucleotides (for example, GTP, ATP, cAMP) and cofactors (for
example, Ca++, NAD+, coenzyme A). Consider the role of GTP in the activation of Ras
by receptor tyrosine kinases.

Ras-GDP + GTP  -> Ras-GTP + GDP

For GTP, BoundaryCondition = true; ConstantAmount = true

Model GTP and GDP with boundary conditions, thus making them boundary species.
In addition, you can set the ConstantAmount property of these species to true to
indicate that their quantity does not vary during a simulation.

Characteristics

Applies to Object: species
Data type boolean

Data values true or false. The default value is false.
Access Read/write



 BoundaryCondition

3-17

Examples

Simulate a Model with a Boundary Condition for a Species

This example illustrates how to use the BoundaryCondition property of a species so
that the species amount is not modified by the reaction it participates in, but by a user-
defined dose object.

Load a sample project.

sbioloadproject radiodecay.sbproj

A SimBiology model named m1 is loaded to the MATLAB Workspace. The model is
a simple radioactive decay model in which two species (x and z) are modified by the
following reaction.

m1.Reactions

   SimBiology Reaction Array

   Index:    Reaction:

   1         x -> z

Simulate the model and view results before adding any boundary conditions.

[t,x,names] = sbiosimulate(m1);

plot(t,x);

legend(names)

xlabel('Time');

ylabel('Amount');



3 Properties — Alphabetical List

3-18

Add a RepeatDose object to the model and specify the species to be dosed, dose amount,
dose schedule, and units.

d1 = adddose(m1,'d1','repeat');

set(d1,'TargetName','z','Amount',100.0,'Interval',1.0,'RepeatCount',8);

set(d1,'TimeUnits','second','AmountUnits','molecule');

Set the BoundaryCondition of species z to be true so that the species will be modified
by the dose object d1, but not by the reaction.

set(m1.species(2),'BoundaryCondition',true);



 BoundaryCondition

3-19

Simulate the model by applying the dose object.

[t2,x2,names] = sbiosimulate(m1,d1);

Plot the results. Notice that the amount of species z is now modified by the repeated dose
object, but not by the reaction.

[t2,x2,names] = sbiosimulate(m1,d1);

plot(t2,x2);

legend(names);

xlabel('Time');

ylabel('Amount');



3 Properties — Alphabetical List

3-20

References

Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J. (2004), Role of molecular
chaperones in steroid receptor action, Essays Biochem, 40:41-58.

See Also

addrule, addspecies, ConstantAmount, InitialAmount



 BuiltInLibrary

3-21

BuiltInLibrary
Library of built-in components

Description

BuiltInLibrary is a SimBiology root object property containing all built-in components
namely, unit, unit-prefixes, and kinetic laws that are shipped with the SimBiology
product. You cannot add, modify, or delete components in the built-in library. The
BuiltInLibrary property is an object that contains the following properties:

• Units — contains all units that are shipped with the SimBiology product. You can
specify units for compartment capacity, species amounts and parameter values, to
do dimensional analysis and unit conversion during simulation. You can display
the built-in units either by using the command sbiowhos -builtin -unit, or by
accessing the root object.

• UnitPrefixes — contains all unit-prefixes that are shipped with the SimBiology
product. You can specify unit—prefixes in combination with a valid unit for
compartment capacity, species amounts and parameter values, to do dimensional
analysis and unit conversion during simulation. You can display the built-in unit-
prefixes either by using the command sbiowhos -builtin -unitprefix, or by
accessing the root object.

• KineticLaws — contains all kinetic laws that are shipped with the SimBiology
product. Use the command sbiowhos -builtin -kineticlaw to see the
list of built-in kinetic laws. You can use built-in kinetic laws when you use the
command addkineticlaw to create a kinetic law object for a reaction object. Refer
to the kinetic law by name when you create the kinetic law object, for example,
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-

Menten');

See “Kinetic Law Definition” on page 3-76 for a definition and more information.

Characteristics

BuiltInLibrary

Applies to Object: root



3 Properties — Alphabetical List

3-22

Data type object
Data values Unit, unit-prefix, and abstract kinetic law objects
Access Read-only

Characteristics for BuiltInLibrary properties:

• Units

Applies to BuiltInLibrary property
Data type unit objects
Data values units
Access Read-only

• UnitPrefixes

Applies to BuiltInLibrary property
Data type unit prefix objects
Data values unit prefixes
Access Read-only

• KineticLaws

Applies to BuiltInLibrary property
Data type Abstract kinetic law object
Data values kinetic laws
Access Read-only

Examples

Example 1

This example uses the command sbiowhos to show the current list of built-in
components.

sbiowhos -builtin -kineticlaw



 BuiltInLibrary

3-23

sbiowhos -builtin -unit

sbiowhos -builtin -unitprefix

Example 2

This example shows the current list of built-in components by accessing the root object.

rootObj = sbioroot;

get(rootObj.BuiltinLibrary, 'KineticLaws')

get(rootObj.BuiltinLibrary, 'Units')

get(rootObj.BuiltinLibrary, 'UnitPrefixes')

See Also

Functions — sbioaddtolibrary, sbioremovefromlibrary sbioroot, sbiounit,
sbiounitprefix

Properties — UserDefinedLibrary



3 Properties — Alphabetical List

3-24

Capacity
Compartment capacity

Description

The Capacity property indicates the size of the SimBiology compartment object.
If the size of the compartment does not vary during simulation, set the property
ConstantCapacity to true.

You can vary compartment capacity using rules or events.

Note: Remember to set the ConstantCapacity property to false for varying capacity.

Events cannot result in the capacity having a negative value. Rules could result in the
capacity having a negative value.

Characteristics

Applies to Object: compartment
Data type double

Data values Positive real number. The default value is 1.
Access Read/write

Examples

Add a compartment to a model and set the compartment capacity.

1 Create a model object named my_model.

modelObj = sbiomodel ('comp_model');

2 Add the compartment object named nucleus with a capacity of 0.5.

compartmentObj = addcompartment(modelObj, 'nucleus', 0.5);



 Capacity

3-25

See Also

addcompartment, addspecies, CapacityUnits, ConstantCapacity



3 Properties — Alphabetical List

3-26

CapacityUnits
Compartment capacity units

Description

The CapacityUnits property indicates the unit definition for the Capacity property
of a compartment object. CapacityUnits can be any unit from the units library.
To get a list of the defined units in the library, use the sbioshowunits function. If
CapacityUnits changes from one unit definition to another, the Capacity does not
automatically convert to the new units. The sbioconvertunits function does this
conversion. To add a user-defined unit to the list, see sbioaddtolibrary.

Characteristics

Applies to Object: compartment
Data type char string

Data values Units from library with dimensions of length, area, or
volume. Default = '' (empty).

Access Read/write

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to
consistent units. Hence, you must specify consistent units, and no unit strings can



 CapacityUnits

3-27

be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

Examples

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add a compartment object named cytoplasm with a capacity of 0.5.

compObj = addcompartment (modelObj, 'cytoplasm', 0.5);

3 Set the CapacityUnits to femtoliter, and verify.

set (compObj,'CapacityUnits', 'femtoliter');

get (compObj,'CapacityUnits')

MATLAB returns:

ans =

femtoliter

See Also

InitialAmount, sbioaddtolibrary, sbioconvertunits, sbioshowunits



3 Properties — Alphabetical List

3-28

Compartments
Array of compartments in model or compartment

Description

Compartments shows you a read-only array of SimBiology compartment objects in
the model object and the compartment object. In the model object, the Compartments
property indicates all the compartments in a Model object as a flat list. In the
compartment object, the Compartments property indicates other compartments that are
referenced within the compartment. The two instances of Compartments are illustrated
in “Examples” on page 3-28.

You can add a compartment object using the method addcompartment.

Characteristics

Applies to Objects: compartment, model
Data type Array of compartment objects
Data values Compartment object. Default is [] (empty).
Access Read-only

Examples

1 Create a model object named modelObj.

modelObj = sbiomodel('cell');

2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');

compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');

4 Display the Compartments property in the model object.



 Compartments

3-29

get(modelObj, 'Compartments')

SimBiology Compartment Array

   Index:    Name:            Capacity:    CapacityUnits:

   1         nucleus          1            

   2         mitochondrion    1            

   3         matrix           1  

5 Display the Compartments property in the compartment object.

get(compartmentObj2, 'Compartments')

SimBiology Compartment - matrix 

   Compartment Components:

     Capacity:          1

     CapacityUnits:     

     Compartments:      0

     ConstantCapacity:  true

     Owner:             mitochondrion

     Species:           0

See Also

addcompartment, addreaction, addspecies, Compartment object



3 Properties — Alphabetical List

3-30

CompileOptions
Dimensional analysis and unit conversion options

Description

The SimBiology CompileOptions property is an object that defines the compile
options available for simulation; you can specify whether dimensional analysis and unit
conversion is necessary for simulation. Compile options are checked during compile time.
The compile options object can be accessed through the CompileOptions property of the
configset object. Retrieve CompileOptions object properties with the get function
and configure the properties with the set function.

Property Summary

DefaultSpeciesDimension Dimension of species name in expression
DimensionalAnalysis Perform dimensional analysis on model
Type Display SimBiology object type
UnitConversion Perform unit conversion

Characteristics

Applies to Object: configset
Data type Object
Data values Compile-time options
Access Read-only

Examples

1 Retrieve the configset object of modelObj.

modelObj = sbiomodel('cell');



 CompileOptions

3-31

configsetObj = getconfigset(modelObj);

2 Retrieve the CompileOptions object (optionsObj) from the configsetObj.

optionsObj = get(configsetObj, 'CompileOptions');

Compile Settings:

     UnitConversion:       false

     DimensionalAnalysis:  true

See Also

get, set



3 Properties — Alphabetical List

3-32

Composition
Unit composition

Description

The Composition property holds the composition of a unit object. The Composition
property shows the combination of base and derived units that defines the unit. For
example, molarity is the name of the unit and the composition is mole/liter. Base units
are the set of units used to define all unit quantity equations. Derived units are defined
using base units or mixtures of base and derived units.

Valid physical quantities for reaction rates are amount/time, mass/time, or concentration/
time.

Characteristics

Applies to Object: Unit
Data type char string

Data values Valid combination of units and prefixes from the library.
Default is '' (empty).

Access Read/write

Examples

This example shows you how to create a user-defined unit, add it to the user-defined
library, and query the Composition property.

1 Create a unit for the rate constants of a second-order reaction.

unitObj = sbiounit('secondconstant', '1/molarity*second', 1); 

2 Query the Composition property.

get(unitObj, 'Composition')



 Composition

3-33

ans =

1/molarity*second

3 Change the Composition property.

set(unitObj, 'Composition', 'liter/mole*second'))

ans =

liter/mole*second

4 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

See Also

get, Multiplier, Offset, sbiounit, set



3 Properties — Alphabetical List

3-34

ConstantAmount
Specify variable or constant species amount

Description

The ConstantAmount property indicates whether the quantity of the species object
can vary during the simulation. ConstantAmount can be either true or false. If
ConstantAmount is true, the quantity of the species cannot vary during the simulation.
By default, ConstantAmount is false and the quantity of the species can vary during
the simulation. If ConstantAmount is false, the quantity of the species can be
determined by reactions and rules.

The property ConstantAmount is for species objects; the property ConstantValue is for
parameter objects.

Note: When you want the species to participate in a reaction, but do not want
any reactions to modify its quantity, set its BoundaryCondition to true, and
ConstantAmount to false.

More Information

The following is an example of modeling species as constant amounts:

Modeling the role of nucleotides (GTP, ATP, cAMP) and cofactors (Ca++, NAD+, coenzyme
A). Consider the role of GTP in the activation of Ras by receptor tyrosine kinases.

Ras-GDP + GTP  -> Ras-GTP + GDP

Model GTP and GDP with constant amount set to true. In addition, you can set the
BoundaryCondition of these species to true, thus making them boundary species.

Characteristics

Applies to Object: species
Data type boolean



 ConstantAmount

3-35

Data values true or false. The default value is false.
Access Read/write

Examples

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add a species object and verify that the ConstantAmount property setting is
'false' or 0.

speciesObj = addspecies (modelObj, 'glucose');

get (speciesObj, 'ConstantAmount')

MATLAB returns:

           ans =

     0

3 Set the constant amount to 'true' and verify.

set (speciesObj, 'ConstantAmount', true);

get (speciesObj, 'ConstantAmount')

MATLAB returns:

ans =

     1

See Also

addspecies, BoundaryCondition



3 Properties — Alphabetical List

3-36

ConstantCapacity
Specify variable or constant compartment capacity

Description

The ConstantCapacity property indicates whether the capacity of the compartment
object can vary during the simulation. ConstantCapacity can be either true (1) or
false (0). If ConstantCapacity is true, the quantity of the compartment cannot vary
during the simulation. By default, ConstantCapacity is true and the quantity of the
compartment cannot vary during the simulation. If ConstantCapacity is false, the
quantity of the compartment can be determined by rules and events.

Characteristics

Applies to Object: compartment
Data type boolean

Data values true or false. The default value is true.
Access Read/write

Examples

Add a compartment to a model and check the ConstantCapacity property of the
compartment.

1 Create a model object named comp_model.

modelObj = sbiomodel ('comp_model');

2 Add the compartment object named nucleus with a capacity of 0.5.

compartmentObj = addcompartment(modelObj, 'nucleus', 0.5);

3 Display the ConstantCapacity property.

get(compartmentObj, 'ConstantCapacity')



 ConstantCapacity

3-37

ans =

     1

See Also

addcompartment, ConstantAmount, ConstantValue



3 Properties — Alphabetical List

3-38

ConstantValue
Specify variable or constant parameter value

Description

The ConstantValue property indicates whether the value of a parameter can change
during a simulation. Enter either true (value is constant) or false (value can change).

You can allow the value of the parameter to change during a simulation by specifying a
rule that changes the Value property of the parameter object.

The property ConstantValue is for parameter objects; the property ConstantAmount is
for species objects.

More Information

As an example, consider feedback inhibition of an enzyme such as aspartate kinase by
threonine. Aspartate kinase has three isozymes that are independently inhibited by
the products of downstream reactions (threonine, homoserine, and lysine). Although
threonine is made through a series of reactions in the synthesis pathway, for illustration,
the reactions are simplified as follows:

Aspartic Aspartylphosphate acid 
aspartate kinase

æ Ææææææææ -b

bb - æ ÆæAspartylphosphate Threonine 

To model inhibition of aspartate kinase by threonine, you could use a rule like the
algebraic rule below to vary the rate of the above reaction and simulate inhibition. In
the rule, the rate constant for the above reaction is denoted by k_aspartate_kinase
and the quantity of threonine is threonine.

 k_aspartate_kinase -(1/threonine)

Characteristics

Applies to Object: parameter



 ConstantValue

3-39

Data type boolean

Data values true or false. The default value is 'true'.
Access Read/write

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add a parameter object.

parameterObj = addparameter (modelObj, 'kf');

3 Change the ConstantValue property of the parameter object from default (true) to
false and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);

get(parameterObj, 'ConstantValue')

MATLAB returns:

ans =

     0

See Also

addparameter



3 Properties — Alphabetical List

3-40

Content
Contents of variant object

Description

The Content property contains the data for the variant object. Content is a cell array
with the structure {'Type', 'Name', 'PropertyName', 'PropertyValue'}.
You can store values for species InitialAmount, parameter Value, and compartment
Capacity, in a variant object.

For more information about variants, see Variant object.

Characteristics

Applies to Object: variant
Data type cell array

Data values Default value is [] (empty).
Access Read/write

Examples

1 Create a model containing three species in one compartment.

modelObj = sbiomodel('mymodel');

compObj = addcompartment(modelObj, 'comp1');

A = addspecies(compObj, 'A');

B = addspecies(compObj, 'B');

C = addspecies(compObj, 'C');

2 Add a variant object that varies the species' InitialAmount property.
variantObj = addvariant(modelObj, 'v1');

addcontent(variantObj, {{'species','A', 'InitialAmount', 5}, ...

{'species', 'B', 'InitialAmount', 10}});

% Display the variant

variantObj



 Content

3-41

SimBiology Variant - v1 (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:

   1                 species      A                 InitialAmount       5

   2                 species      B                 InitialAmount       10

3 Append data to the Content property.
addcontent(variantObj, {'species', 'C', 'InitialAmount', 15});

SimBiology Variant - v1 (inactive)

   ContentIndex:     Type:        Name:             Property:           Value:

   1                 species      A                 InitialAmount        5

   2                 species      B                 InitialAmount       10

   3                 species      C                 InitialAmount       15

4 Remove a species from the Content property.

rmcontent(variantObj, 3);

5 Replace the data in the Content property.
set(variantObj, 'Content', {'species', 'C', 'InitialAmount', 15});

See Also

addcontent, rmcontent, sbiovariant



3 Properties — Alphabetical List

3-42

CovariateLabels
Identify covariate columns in data set

Description

CovariateLabels is a property of the PKData object. It specifies the column in DataSet
that contains the covariate data.

Characteristics

Applies to Object: PKData
Data type char string or cell array of strings
Data values Column headers from imported data set
Access Read/write

See Also
PKData object

How To
• “Specify and Classify the Data to Fit”
• “Specify a Covariate Model”



 CovariateLabels (CovariateModel)

3-43

CovariateLabels (CovariateModel)
Labels for covariates in CovariateModel object

Description

The CovariateLabels property is a cell array of strings specifying the labels for the
covariates in the Expression (CovariateModel) property of a CovariateModel
object.

Characteristics

Applies to Object: CovariateModel object
Data type Cell array of strings
Data values Labels for the covariates in the

Expression (CovariateModel)

property
Access Read only

See Also
CovariateModel object | Expression (CovariateModel)



3 Properties — Alphabetical List

3-44

Data
Store simulation data

Description

The Data property contains the simulation data stored in the SimData object.

This property contains all data logged during a simulation, including species amounts,
parameter values, and sensitivities. The property is an m x n array, where m is the
number of time steps in the simulation and n is the number of quantities logged. The
rows of the array are labeled by the time points in the Time property, and the columns
are labeled by the metadata in the DataInfo property.

Characteristics

Applies to Object: SimData
Data type double

Data values Default value is [] (empty).
Access Read-only

See Also

DataInfo, ModelName



 DataCount

3-45

DataCount
Numbers of species, parameters, sensitivities

Description

The DataCount property shows how many species, parameters, and sensitivities
are logged in a SimData object. It is a MATLAB structure with the fields Species,
Parameter, and Sensitivity. The information in this property is redundant with
the DataInfo property and is there to give you a convenient means to access the
information.

Characteristics

Applies to Object: SimData
Data type struct

Data values Default value for each field is 0.
Access Read-only

See Also

StopTime



3 Properties — Alphabetical List

3-46

DataInfo

Metadata labels for simulation data

Description

The DataInfo property contains the metadata that label the columns of the SimData
object array. It is an n x 1 cell array of structures. The ith cell contains metadata
labeling the ith column of the SimData object array.

The possible types of structures are as follows.

Type Fields

Species Type: species

Name: 

Compartment:

Units:

Parameter Type: parameter

Name: 

Reaction: <name of reaction that a parameter is scoped to, 

           or '' if parameter is scoped to  model>

Units:

Sensitivity Type: sensitivity

Name: <for example: d[x]/d[y]_0>

OutputType: <The type of the sensitivity output,

               either 'species' or 'parameter'>

OutputName: <The name of the sensitivity output>

OutputQualifier: <The compartment or reaction for 

                   the sensitivity output, for 

                   species or parameters, respectively>

InputType: <The type of the sensitivity input, 

              either 'species' or 'parameter'>

InputName: <The name of the sensitivity input>

InputQualifier: <The compartment or reaction for 

                  the sensitivity input, for 

                  species or parameters, respectively>

Units:



 DataInfo

3-47

Characteristics

Applies to Object: SimData
Data type n x 1 cell array of structs
Data values Default value is 0x1 cell array.
Access Read-only

See Also

StopTime



3 Properties — Alphabetical List

3-48

DataNames
Show names in SimData object

Description

The DataNames property holds the names that label the columns of the data matrix in
the Data property. The property contains an nx1 array of strings. The software provides
this information for your convenience.

Characteristics

Applies to Object: SimData
Data type string array

Data values Default value is 0x1 cell array.
Access Read-only

See Also

StopTime



 DataSet

3-49

DataSet
Dataset object containing imported data

Description

DataSet is a property of the PKData object. It contains the imported data set. The
PKData object constructor (PKData) assigns the specified data set to its DataSet
property during construction.

Characteristics

Applies to Object: PKData
Data type dataset object
Data values Variable containing dataset object
Access Read-only

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object



3 Properties — Alphabetical List

3-50

DefaultSpeciesDimension
Dimension of species name in expression

Description

The DefaultSpeciesDimension property specifies how SimBiology interprets
species names in expressions (namely reaction rate, rule, or event expressions).
The valid property values are substance or concentration. If you specify
InitialAmountUnits, SimBiology interprets species names appearing in expressions
as concentration or substance amount according to the units specified, regardless of
the value in DefaultSpeciesDimension. Thus, if DefaultSpeciesDimension is
concentration and you specify species units as molecule, SimBiology interprets
species names in expressions as substance. This interpretation applies even when
DimensionalAnalysis is off.

You can find DefaultSpeciesDimension in the CompileOptions property.

When you set DefaultSpeciesDimension to substance, if you do not specify units,
SimBiology interprets species names appearing in expressions as substance amounts,
and does not scale by compartment capacity. To include a species concentration in an
expression, divide by the appropriate compartment capacity in the expression. To specify
compartment capacity in an expression enter the compartment name.

When you set DefaultSpeciesDimension to concentration, SimBiology interprets
species names appearing in expressions as concentrations, and scales by compartment
capacity in the expressions. To include a species amount in an expression, multiply by
the species name by the appropriate compartment name in the expression.

For information on dimensional analysis for reaction rates, see “How Reaction Rates Are
Evaluated”.

Characteristics

Applies to Object: CompileOptions (in configset object)
Data type char string



 DefaultSpeciesDimension

3-51

Data values concentration or substance. Default value is
concentration.

Access Read/write

See Also

CompileOptions, DimensionalAnalysis, get, getconfigset, sbiosimulate, set



3 Properties — Alphabetical List

3-52

DependentVarLabel
Identify dependent variable column in data set

Description

DependentVarLabel is a property of a PKData object. It specifies the column(s) in
DataSet that contain the dependent variable(s), for example, measured response(s). The
column must contain numeric values, and cannot contain Inf or –Inf.

Characteristics

Applies to Object: PKData
Data type char string or cell array of strings
Data values Column header from an imported data set
Access Read/write

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object



 DependentVarUnits

3-53

DependentVarUnits
Response units in PKData object

Description

DependentVarUnits is a property of a PKData object. It specifies the units for the
column(s) containing the dependent variable(s) (responses) in the imported data set. If
unit conversion is on, plot results in the SimBiology desktop show the units specified in
DependentVarUnits.

To get a list of units, use the sbioshowunits function.

Characteristics

Applies to Object: PKData
Data type char string or cell array of strings
Data values Units from the units library. Default is an empty cell array.

Tip If there are no units associated with the dependent
variable(s) in your data set, you can set this property to a cell
array of empty strings, or simply an empty cell array.

Access Read/write

See Also

DependentVarLabel, PKData Object



3 Properties — Alphabetical List

3-54

DimensionalAnalysis
Perform dimensional analysis on model

Description

The DimensionalAnalysis property specifies whether to perform dimensional
analysis on the model before simulation. It is a property of the CompileOptions object.
CompileOptions holds the model's compile time options and is the object property of
the configset object. When DimensionalAnalysis is set to true, the SimBiology
software checks whether the physical quantities of the units involved in reactions and
rules, match and are applicable.

For example, consider a reaction a + b —> c. Using mass action kinetics, the reaction
rate is defined as a*b*k, where k is the rate constant of the reaction. If you specify that
initial amounts of a and b are 0.01M and 0.005M respectively, then units of k are 1/
(M*second). If you specify k with another equivalent unit definition, for example, 1/
[(moles/liter)*second], DimensionalAnalysis checks whether the physical
quantities match. If the physical quantities do not match, you see an error and the model
is not simulated.

Unit conversion requires dimensional analysis. If DimensionalAnalysis is off,
and you turn UnitConversion on, then DimensionalAnalysis is turned on
automatically. If UnitConversion is on and you turn off DimensionalAnalysis, then
UnitConversion is turned off automatically.

If you have MATLAB function calls in your model, dimensional analysis ignores any
expressions containing function calls and generates a warning.

Valid physical quantities for reaction rates are amount/time, mass/time, or concentration/
time.

Characteristics

Applies to Object: CompileOptions (in configset object)
Data type boolean



 DimensionalAnalysis

3-55

Data values true or false. Default value is true.
Access Read/write

Note: SimBiology allows exponentiation of any dimensionless quantity to any
dimensionless power. For example, you can write the following expression if both x and a
are dimensionless: (x + 3)^(a + 0.5)

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to
consistent units. Hence, you must specify consistent units, and no unit strings can
be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

Tip If you have a custom function and UnitConversion is on, follow the
recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not
already dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in
hour and y is the concentration of a species in mole/liter. When you use this function
in your model to define a repeated assignment rule for instance, define it as: s1 =
f(time/t0)*s0, where time is the simulation time, t0 is a parameter defined as
1.0 hour, s0 is a parameter defined as 1.0 mole/liter, and s1 is the concentration of
a species in mole/liter. Note that time and s1 do not have to be in the same units as



3 Properties — Alphabetical List

3-56

t0 and s0, but they must be dimensionally consistent. For example, the time and s1
units can be set to minute and picomole/liter, respectively.

Examples

This example shows how to retrieve and set DimensionalAnalysis from the default
true to false in the default configuration set in a model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator 

   Model Components:

     Models:            0

     Parameters:        0

     Reactions:         42

     Rules:             0

     Species:           23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

 Configuration Settings - default (active)

     SolverType:           ode15s

     StopTime:             10.000000

   SolverOptions:

     AbsoluteTolerance:    1.000000e-006

     RelativeTolerance:    1.000000e-003

   RuntimeOptions:

     StatesToLog:          all

   CompileOptions:

     UnitConversion:       true

     DimensionalAnalysis:  true

3 Retrieve the CompileOptions object.

optionsObj = get(configsetObj,'CompileOptions')



 DimensionalAnalysis

3-57

Compile Settings:

     UnitConversion:       true

     DimensionalAnalysis:  true

4 Assign a value of false to DimensionalAnalysis.

 set(optionsObj,'DimensionalAnalysis', false)

See Also

get, getconfigset, sbiosimulate, set



3 Properties — Alphabetical List

3-58

Dosed
Dosed object name

Description

Dosed is a property of the PKModelMap object. It specifies the name(s) of species object(s)
that receive an input, such as a drug in a compartment or a ligand.

When dosing multiple compartments, a one-to-one relationship must exist between the
number and order of elements in the Dosed property and the DosingType property.

Characteristics

Applies to Object: PKModelMap
Data type char string or cell array of strings
Data values Name of a species object or empty. Default is an empty cell

array.
Access Read/write

See Also

“Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” in the SimBiology User's Guide, DosingType, Estimated, Observed,
PKModelMap object



 DoseLabel

3-59

DoseLabel
Dose column in data set

Description

DoseLabel is a property of the PKData object. DoseLabel specifies the column that
contains that contains the dosing information, in DataSet. The column must contain
positive values, and cannot contain Inf or –Inf.

Characteristics

Applies to Object: PKData
Data type string or array of strings
Data values Column headers from imported data set
Access Read/write

See Also

PKData object, sbionmimport, sbionmfiledef, “Specify and Classify the Data to
Fit” in the SimBiology documentation



3 Properties — Alphabetical List

3-60

DoseUnits
Dose units in PKData object

Description

The DoseUnits property indicates the units for dose values in the PKData object. Dose
units must have dimensions of amount or mass. The length of DoseUnits must be the
same as DoseLabel. For example, if the DoseLabel property defines two columns
containing dosing information, DoseUnits must also define units for both columns. If
unit conversion is on, dose and rate units must be consistent with each other (that is in
terms of amount or mass) and must be consistent with the species object that is being
dosed.

To get a list of units, use the sbioshowunits function.

Characteristics

Applies to Object: PKData
Data type string or array of strings
Data values Units from units library. Default is '' (empty).
Access Read/write

See Also

DoseLabel, PKData Object



 DosingType

3-61

DosingType
Drug dosing type in compartment

Description

DosingType is a property of the PKCompartment and PKModelMap objects. It specifies
the type of dosing of a drug in a compartment. You can only dose one compartment in the
model at any given time. For a description of the types of dosing supported, the model
components created for each type of dosing, and the parameters to estimate, see “Dosing
Types”.

Characteristics

Applies to Objects: PKCompartment, PKModelMap
Data type char string or cell array of strings
Data values '', 'Bolus', 'Infusion', 'ZeroOrder', 'FirstOrder'
Access Read/write

See Also

EliminationType, PKCompartment object, PKModelMap object



3 Properties — Alphabetical List

3-62

DurationParameterName
Parameter specifying length of time to administer a dose

Description

DurationParameterName is a property of a RepeatDose or ScheduleDose object.

Specify the name of a parameter object that is:

• Scoped to a model
• Constant, that is, its ConstantValue property is true

This property specifies the length of time it takes to administer a dose.

Note: If you set the DurationParameterName property of a dose, you must also specify
the Amount property of the dose, and set the Rate property to 0. This is because the rate
is calculated from the amount and duration.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose
Data type char string

Data values Name of a parameter object or empty. Default is an empty string.

The parameter object must be:

• Scoped to a model
• Constant, that is, have a ConstantValue property set to true

Access Read/write

See Also

RepeatDose object, ScheduleDose object



 EliminationType

3-63

EliminationType
Drug elimination type from compartment

Description

EliminationType is a property of the PKCompartment object. It specifies the
type of elimination of adrug from a compartment. For a description of the types of
elimination supported, the model components created for each type of elimination, and
the parameters to estimate, see “Elimination Types”.

Characteristics

Applies to Object: PKCompartment
Data type char string

Data values 'Linear', 'Linear-Clearance', 'Enzymatic', and ''
Access Read/write

See Also

addCompartment, DosingType, PKCompartment object



3 Properties — Alphabetical List

3-64

ErrorTolerance
Specify explicit or implicit tau error tolerance

Description

The ErrorTolerance property specifies the error tolerance for the explicit tau
and implicit tau stochastic solvers. It is a property of the SolverOptions object.
SolverOptions is a property of the configset object. The explicit and implicit tau
solvers automatically chooses a time interval (tau) such that the relative change in the
propensity function for each reaction is less than the user-specified error tolerance.

A propensity function describes the probability that the reaction will occur in the next
smallest time interval, given the conditions and constraints.

If the error tolerance is too large, there may not be a solution to the problem and that
could lead to an error. If the error tolerance is small, the solver will take more steps than
when the error tolerance is large leading to longer simulation times. The error tolerance
should be adjusted depending upon the problem, but a good value for the error tolerance
is between 1 % to 5 %.

Characteristics

Applies to Object: SolverOptions
Data type double

Data values >0, <1. The default is 3e-2.
Access Read/write

Examples

This example shows how to change ErrorTolerance settings.

1 Retrieve the configset object from the modelObj and change the SolverType to
expltau.



 ErrorTolerance

3-65

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);

set(configsetObj, 'SolverType', 'expltau')

2 Change the ErrorTolerance to 1e-8.

set(configsetObj.SolverOptions, 'ErrorTolerance', 5.0e-2);

get(configsetObj.SolverOptions, 'ErrorTolerance')

ans =

  5.000000e-002

See Also

LogDecimation, RandomState



3 Properties — Alphabetical List

3-66

Estimated
Names of parameters to estimate

Description

Estimated is a property of the PKModelMap object. It specifies the name(s) of the
object(s) to estimate. Specify the name(s) of species, compartment, or parameter object(s)
that are scoped to a model.

Note: If you specify a species object, you are estimating the InitialAmount property of
the species object.

Characteristics

Applies to Object: PKModelMap
Data type char string or cell array of strings
Data values Name of a species, compartment, or parameter object or empty. Default

is an empty cell array.
Access Read/write

See Also

“Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” in the SimBiology User's Guide, Dosed, InitialAmount, Observed,
PKModelMap object



 EventFcns

3-67

EventFcns

Event expression

Description

Property of the event object that defines what occurs when the event is triggered. Specify
a cell array of strings.

EventFcns can be any MATLAB assignment or expression that defines what is executed
when the event is triggered. All EventFcn expressions are assignments of the form
'objectname = expression', where objectname is the name of a valid SimBiology
object.

For more information about how SimBiology handles events, see “How Events Are
Evaluated”. For examples of event functions, see “Specifying Event Functions”.

Characteristics

Applies to Object: event
Data type Cell array of strings
Data values EventFcn strings '' (empty)
Access Read/write

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger x > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does
not have to have the same unit as the constant x0, but must be dimensionally consistent
with it. For example, the unit of x can be picomole/liter instead of mole/liter.



3 Properties — Alphabetical List

3-68

Examples

1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator');

eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Set the EventFcns property of the event object.

set(eventObj, 'EventFcns', {'pA = OpA','mA = pol'});

3 Get the EventFcns property.

get(eventObj, 'EventFcns')

See Also

Event object, Trigger



 Events

3-69

Events
Contain all event objects

Description

Property to indicate events in a model object. Read-only array of Event objects.

An event defines an action when a defined condition is met. For example, the quantity of
a species may double when the quantity of species B is 100. An event is triggered when
the conditions specified in the event are met by the model. For more information, see
“Events” and “Event Object”.

Add an event to a Model object with the method addevent method and remove an event
with the delete method. See Event object for more information.

You can view event object properties with the get command and modify the properties
with the set command.

Characteristics

Applies to Object: model
Data type Array of event objects
Data values Event object. The default is [] (empty).
Access Read-only

Examples

1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator')

eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Get a list of properties for an event object.

get(modelObj.Events(1));



3 Properties — Alphabetical List

3-70

Or

get(eventObj)

MATLAB displays a list of event properties.

            Active: 1

        Annotation: ''

         EventFcns: {'OpC = 200'}

              Name: ''

             Notes: ''

            Parent: [1x1 SimBiology.Model]

               Tag: ''

           Trigger: 'time >= 5'

      TriggerDelay: 0

 TriggerDelayUnits: 'second'

              Type: 'event'

          UserData: []

See Also

EventFcns, Event object, Model object, Trigger



 Exponent

3-71

Exponent
Exponent value of unit prefix

Description

Exponent shows the value of 10^Exponent that defines the numerical value of the unit
prefix Name. You can use the unit prefix in conjunction with any built-in or user-defined
units. For example, for the unit mole, specify as picomole to use the Exponent, -12.

Characteristics

Applies to Object: Unit prefix
Data type double

Data values Real number. Default is 0.
Access Read/write

Examples

This example shows you how to create a user-defined unit prefix, add it to the user-
defined library, and query the Exponent property.

1 Create a unit prefix.

unitprefixObj1 = sbiounitprefix('peta', 15);

2 Add the unit prefix to the user-defined library.

sbioaddtolibrary(unitprefixObj1);

3 Query the Exponent property.

get(unitprefixObj1, 'Exponent')

ans =

    15



3 Properties — Alphabetical List

3-72

See Also

get, sbioaddtolibrary, sbiounitprefix, set, UnitPrefix object



 Expression (CovariateModel)

3-73

Expression (CovariateModel)

Define relationship between parameters and covariates

Description

The Expression property is a string or cell array of strings, where each string
represents the relationship between a parameter and one or more covariates. The
Expression property denotes fixed effects with the prefix theta, and random effects
with the prefix eta.

Each expression string must be in the form:
parameterName = relationship

This example of an expression string defines the relationship between a parameter
(volume) and a covariate (weight), with fixed effects, but no random effects:
CovModelObj.Expression = {'volume = theta1 + theta2*weight'};

This table illustrates expression formats for some common parameter-covariate
relationships.

Parameter-Covariate
Relationship

Expression Format

Linear with random effect Cl = theta1 + theta2*WEIGHT + eta1

Exponential without random
effect

Cl = exp(theta_Cl + theta_Cl_WT*WEIGHT)

Exponential, WEIGHT
centered by mean, has
random effect

Cl = exp(theta1 + theta2*(WEIGHT -

mean(WEIGHT)) + eta1)

Exponential, log(WEIGHT),
which is equivalent to power
model

Cl = exp(theta1 + theta2*log(WEIGHT) + eta1)

Exponential, dependent on
WEIGHT and AGE, has
random effect

Cl = exp(theta1 + theta2*WEIGHT + theta3*AGE

+ eta1)



3 Properties — Alphabetical List

3-74

Parameter-Covariate
Relationship

Expression Format

Inverse of probit, dependent
on WEIGHT and AGE, has
random effect

Cl = probitinv(theta1 + theta2*WEIGHT +

theta3*AGE + eta1)

Inverse of logit, dependent
on WEIGHT and AGE, has
random effect

Cl = logitinv(theta1 + theta2*WEIGHT +

theta3*AGE + eta1)

Tip To simultaneously fit data from multiple dose levels, use a CovariateModel object
as an input argument to sbiofitmixed, and omit the random effect (eta) from the
Expression property in the CovariateModel object.

The Expression property must meet the following requirements:

• The expression strings are valid MATLAB code.
• Each expression string is linear with a transformation.
• There is exactly one expression string for each parameter.
• In each expression string, a covariate is used in at most one term.
• In each expression string, there is at most one random effect (eta)
• Fixed effect (theta) and random effect (eta) names are unique within and across

expression strings. That is, each covariate has its own fixed effect.

Tip Use the getCovariateData (pkdata) method to view the covariate data when
writing equations for the Expression property of a CovariateModel object.

Tip Use the verify (covmodel) method to check that the Expression property of a
CovariateModel object meets the conditions described previously.

Characteristics

Applies to Object: CovariateModel object



 Expression (CovariateModel)

3-75

Data type String or cell array of strings
Data values parameterName = relationship

Access Read/write

See Also
CovariateModel object | getCovariateData (pkdata) | verify (covmodel)

How To
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”



3 Properties — Alphabetical List

3-76

Expression (AbstractKineticLaw, KineticLaw)

Expression to determine reaction rate equation

Description

The Expression property indicates the mathematical expression that is used to
determine the ReactionRate property of the reaction object. Expression is a reaction
rate expression assigned by the kinetic law definition used by the reaction. The kinetic
law being used is indicated by the property KineticLawName. You can configure
Expression for user-defined kinetic laws, but not for built-in kinetic laws. Expression
is read only for kinetic law objects.

Note: If you set the Expression property to a reaction rate expression that is not
continuous and differentiable, see “Using Events to Address Discontinuities in Rule and
Reaction Rate Expressions” before simulating your model.

Kinetic Law Definition

The kinetic law definition provides a mechanism for applying a specific rate law to
multiple reactions. It acts as a mapping template for the reaction rate. The kinetic
law is defined by a mathematical expression, (defined in the property Expression),
and includes the species and parameter variables used in the expression. The species
variables are defined in the SpeciesVariables property, and the parameter variables
are defined in the ParameterVariables property of the kinetic law object.

If a reaction is using a kinetic law definition, the ReactionRate property of the reaction
object shows the result of a mapping from the kinetic law definition. To determine
ReactionRate, the species variables and parameter variables that participate in
the reaction rate should be mapped in the kinetic law for the reaction. In this case,
SimBiology software determines the ReactionRate by using the Expression
property of the abstract kinetic law object, and by mapping SpeciesVariableNames to
SpeciesVariables and ParameterVariableNames to ParameterVariables.

For example, the kinetic law definition Henri-Michaelis-Menten has the
Expression Vm*S/(Km+S), where Vm and Km are defined as parameters in the



 Expression (AbstractKineticLaw, KineticLaw)

3-77

ParameterVariables property of the abstract kinetic law object, and S is defined as a
species in the SpeciesVariable property of the abstract kinetic law object.

By applying the Henri-Michaelis-Menten kinetic law to a reaction A -> B  with Va
mapping to Vm, A mapping to S, and Ka mapping to Km, the rate equation for the reaction
becomes Va*A/(Ka+A).

The exact expression of a reaction using MassAction kinetic law varies depending upon
the number of reactants. Thus, for mass action kinetics the Expression property is set
to MassAction because in general for mass action kinetics the reaction rate is defined as

r k Si
m

i

n

i

r

=

=

’[ ]

1

where [Si] is the concentration of the ith reactant, mi is the stoichiometric coefficient of
[Si], nr is the number of reactants, and k is the mass action reaction rate constant.

SimBiology software contains some built-in kinetic laws. You can also define your own
kinetic laws. To find the list of available kinetic laws, use the sbiowhos -kineticlaw
command (sbiowhos). You can create a kinetic law definition with the function
sbioabstractkineticlaw and add it to the library using sbioaddtolibrary.

Characteristics

Applies to Objects: abstract kinetic law, kinetic law
Data type char string

Data values Defined by kinetic law definition
Access Read-only in kinetic law object. Read/write

in user-defined kinetic law.

Examples

Example 1

Example with Henri-Michaelis-Menten kinetics



3 Properties — Alphabetical List

3-78

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Verify that the Expression property for the kinetic law object is Henri-
Michaelis-Menten.

get (kineticlawObj, 'Expression')

MATLAB returns:

ans =

Vm*S/(Km + S) 

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm
and Km) and one species variable (S) that you should set. To set these variables,
first create the parameter variables as parameter objects (parameterObj1,
parameterObj2) with names Vm_d, Km_d, and assign the objects' Parent property
value to the kineticlawObj. The species object with Name a is created when
reactionObjis created and need not be redefined.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');

parameterObj2 = addparameter(kineticlawObj, 'Km_d');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});

set(kineticlawObj,'SpeciesVariableNames', {'a'});

6 Verify that the reaction rate is expressed correctly in the reaction object
ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d+a)



 Expression (AbstractKineticLaw, KineticLaw)

3-79

Example 2

Example with Mass Action kinetics.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

get(kineticlawObj, 'Expression')

MATLAB returns:

ans =

MassAction 

3 Assign the rate constant for the reaction.

set (kineticlawObj, 'ParameterVariablenames', 'k');

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

k*a*b

See Also

KineticLawName, Parameters, ParameterVariableNames, ParameterVariables,
ReactionRate, sbioaddtolibrary, sbiowhos, SpeciesVariables,
SpeciesVariableNames



3 Properties — Alphabetical List

3-80

FixedEffectDescription (CovariateModel)
Descriptions of fixed effects in CovariateModel object

Description

The FixedEffectDescription property is a cell array of strings describing the fixed
effects in the Expression (CovariateModel) property of a CovariateModel object.
Each string describes the role of a fixed effect in the expression equation. For example, in
the following expression equation:

Cl = exp(theta1 + theta2*WEIGHT + theta3*AGE + eta1)

The description for the fixed effect theta1 is 'Cl', which indicates it is the intercept
for the parameter Cl. Also, the description for the fixed effect theta2 is 'Cl/WEIGHT',
which indicates it is the slope of the line that defines the relationship between the
parameter Cl and the covariate WEIGHT.

Characteristics

Applies to Object: CovariateModel object
Data type Cell array of strings
Data values Description of the roles of the fixed effects

in the Expression (CovariateModel)
property

Access Read only

See Also
CovariateModel object | Expression (CovariateModel) | FixedEffectNames
(CovariateModel) | FixedEffectValues (CovariateModel)



 FixedEffectNames (CovariateModel)

3-81

FixedEffectNames (CovariateModel)
Names of fixed effects in CovariateModel object

Description

The FixedEffectNames property is a cell array of strings specifying the names of the
fixed effects in the Expression (CovariateModel) property of a CovariateModel
object. Names of fixed effects are denoted with the prefix theta.

Characteristics

Applies to Object: CovariateModel object
Data type Cell array of strings
Data values Names of the fixed effects in the

Expression (CovariateModel)

property. These name are denoted with the
prefix theta.

Access Read only

See Also
CovariateModel object | Expression (CovariateModel) |
FixedEffectDescription (CovariateModel) | FixedEffectValues
(CovariateModel)



3 Properties — Alphabetical List

3-82

FixedEffectValues (CovariateModel)
Values for initial estimates of fixed effects in CovariateModel object

Description

The FixedEffectValues property is a structure containing one field for each fixed
effect in the Expression (CovariateModel) property of a CovariateModel object.
Each field contains the value of the initial estimate for a fixed effect.

Tip You must set this property before using the CovariateModel object as input to
sbionlmefit or sbionlmefitsa. Use the constructDefaultFixedEffectValues
(covmodel) method to create a structure of fixed-effect initial estimate values, set to a
default of zero. Then edit the structure and use it to modify this property.

Characteristics

Applies to Object: CovariateModel object
Data type Structure with one field for each fixed

effect
Data values Each field contains a double specifying

the value of the initial estimate for a fixed
effect in the CovariateModel object

Access Read/write

See Also
CovariateModel object | constructDefaultFixedEffectValues (covmodel) |
Expression (CovariateModel) | FixedEffectDescription (CovariateModel)
| FixedEffectNames (CovariateModel)

How To
• Modeling the Population Pharmacokinetics of Phenobarbital in Neonates
• “Specify a Covariate Model”



 GroupID

3-83

GroupID
Integer identifying each group in data set

Description

GroupID is a property of the PKData object. It is an array of the same length as the
DataSet property containing an integer to identify each group. PKData sets this property
during construction of the PKData object.

Characteristics

Applies to Object: PKData
Data type double

Data values Index value for each group
Access Read-only

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object



3 Properties — Alphabetical List

3-84

GroupLabel
Identify group column in data set

Description

GroupLabel is a property of the PKData object. It specifies the column in DataSet that
contains the group identification labels.

Characteristics

Applies to Object: PKData
Data type char string

Data values Column header string from imported data set
Access Read/write

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object,
GroupNames



 GroupNames

3-85

GroupNames
Unique values from GroupLabel in data set

Description

GroupNames is a property of the PKData object. It contains unique values from the
data column specified by the GroupLabel property. PKData sets this property during
construction of the PKData object.

Characteristics

Applies to Object: PKData
Data type char string or cell array of strings
Data values Unique values in GroupLabel
Access Read-only

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object,
GroupLabel



3 Properties — Alphabetical List

3-86

HasLag
Lag associated with dose targeting compartment

Description

HasLag is a property of the PKCompartment object. It is a logical indicating if the dose
targeting the compartment has a time lag or not.

Characteristics

Applies to Object: PKCompartment
Data type logical
Data values 1 (true) or 0 (false). Default is 0 (false).
Access Read/write

See Also

addCompartment, DosingType, EliminationType, PKCompartment object



 HasResponseVariable

3-87

HasResponseVariable
Compartment drug concentration reported

Description

HasResponseVariable is a property of the PKCompartment object. It is a logical
indicating if the drug concentration in this compartment is reported.

Note: The HasResponseVariable property can be true for more than one
PKCompartment object in the model. If you perform a parameter fit on a model, at least
one PKCompartment object in the model must have a HasResponseVariable property
set to true.

Characteristics

Applies to Object: PKCompartment
Data type Logical
Data values 1 (true) or 0 (false). Default is 0 (false).
Access Read/write

See Also

addCompartment, DosingType, EliminationType, PKCompartment object



3 Properties — Alphabetical List

3-88

IndependentVarLabel
Identify independent variable column in data set

Description

IndependentVarLabel is a property of the PKData object. It specifies the column in
DataSet that contains the independent variable (for example, time).

The column must contain positive values, and cannot contain, NaN, Inf or –Inf.

Characteristics

Applies to Object: PKData
Data type char string

Data values Column header from imported data set
Access Read/write

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object



 IndependentVarUnits

3-89

IndependentVarUnits
Time units in PKData object

Description

The IndependentVarUnits property indicates the units for the column containing the
independent variable (time) in the PKData object. If unit conversion is on, plot results in
the SimBiology desktop show the units specified in IndependentVarUnits.

To get a list of units, use the sbioshowunits function.

Characteristics

Applies to Object: PKData
Data type string
Data values Time units. Default is '' (empty).
Access Read/write

See Also

DependentVarLabel, PKData Object



3 Properties — Alphabetical List

3-90

InitialAmount
Species initial amount

Description

The InitialAmount property indicates the initial quantity of the SimBiology species
object. InitialAmount is the quantity of the species before the simulation starts.

Characteristics

Applies to Object: species
Data type double

Data values Positive real number. Default value is 0.
Access Read/write

Examples

Add a species to a model and set the initial amount of the species.

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add the species object named glucose.

speciesObj = addspecies (modelObj, 'glucose');

3 Set the initial amount to 100 and verify.

set (speciesObj, 'InitialAmount',100);

get (speciesObj, 'InitialAmount')

MATLAB returns:

ans =



 InitialAmount

3-91

   100

See Also

addspecies, InitialAmountUnits



3 Properties — Alphabetical List

3-92

InitialAmountUnits
Species initial amount units

Description

The InitialAmountUnits property indicates the unit definition for the
InitialAmount property of a species object. InitialAmountUnits can be one of the
built-in units. To get a list of the defined units, use the sbioshowunits function. If
InitialAmountUnits changes from one unit definition to another, InitialAmount
does not automatically convert to the new units. The sbioconvertunits function
does this conversion. To add a user-defined unit to the list, use sbiounit followed by
sbioaddtolibrary.

See DefaultSpeciesDimension for more information on specifying dimensions for
species quantities. InitialAmountUnits must have corresponding dimensions to
CapacityUnits. For example, if the CapacityUnits are meter2, then species must be
amount/meter2 or amount.

Characteristics

Applies to Object: species
Data type char string

Data values Units from library with dimensions of amount, amount/length,
amount/area, or amount/volume. Default is '' (empty).

Access Read/write

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.



 InitialAmountUnits

3-93

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to
consistent units. Hence, you must specify consistent units, and no unit strings can
be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

Examples

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

compObj = addcompartment(modelObj, 'cell');

2 Add a species object named glucose.

speciesObj = addspecies (compObj, 'glucose');

3 Set the initial amount to 100, InitialAmountUnits to molecule, and verify.

set (speciesObj,'InitialAmountUnits','molecule'); 

get (speciesObj,'InitialAmountUnits')

MATLAB returns:

ans =

molecule

See Also

DefaultSpeciesDimension, InitialAmount, sbioaddtolibrary,
sbioconvertunits, sbioshowunits, sbiounit,



3 Properties — Alphabetical List

3-94

Inputs
Specify species and parameter input factors for sensitivity analysis

Description

Inputs is a property of the SensitivityAnalysisOptions object.
SensitivityAnalysisOptions is a property of the configuration set object.

Use Inputs to specify the species, parameters, or compartments with respect to which
you want to compute the sensitivities of the species or parameter states in your model.

The SimBiology software calculates sensitivities with respect to the values of the
parameters, capacities of compartments, and the initial amounts of the species specified
in the Inputs property. When you simulate a model with SensitivityAnalysis
enabled in the active configuration set object, sensitivity analysis returns the computed
sensitivities of the species and parameters specified in the Outputs property. For a
description of the output, see the SensitivityAnalysisOptions property description.

Characteristics

Applies to Object: SensitivityAnalysisOptions
Data type Species, parameter, or compartment object or an array of

objects

Note:

• If this object is determined by a repeated assignment
rule, then you cannot use it as an Inputs property.

• To be an input factor, a compartment object must have
a constant capacity, that is, its ConstantCapacity
property must be set to true.

Data values Species or parameter object, or an array of objects.
Default is [] (empty array).



 Inputs

3-95

Access Read/write

Examples

This example shows how to set Inputs for sensitivity analysis.

1 Import the radio decay model from the SimBiology demos.

modelObj  = sbmlimport('radiodecay');

2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);

3 Add a parameter to the Inputs property and display it. Use the sbioselect
function to retrieve the parameter object from the model.

SimBiology Parameter Array

Index:    Name:    Value:    ValueUnits:

 1         c        0.5       1/second

See Also

Outputs, sbioselect, SensitivityAnalysis, SensitivityAnalysisOptions



3 Properties — Alphabetical List

3-96

Interval
Time between doses

Description

Interval is a property of a RepeatDose object. This property defines the equally spaced
times between repeated doses.

Note: When the Interval property is 0, RepeatDose ignores the RepeatCount
property, that is, it treats it as though it is set to 0.

Characteristics

Applies to Object: RepeatDose
Data type double

Data values Nonnegative real number. Default is 0
Access Read/Write

See Also

RepeatDose object, ScheduleDose object



 KineticLaw

3-97

KineticLaw
Show kinetic law used for ReactionRate

Description

The KineticLaw property shows the kinetic law that determines the reaction rate
specified in the ReactionRate property of the reaction object. This property shows the
kinetic law used to define ReactionRate.

KineticLaw can be configured with the addkineticlaw method. The addkineticlaw
function configures the ReactionRate based on the KineticLaw and the species and
parameters specified in the kinetic law object properties SpeciesVariableNames and
ParameterVariableNames. SpeciesVariableNames are determined automatically for
mass action kinetics.

If you update the reaction, the ReactionRate property automatically updates only for
mass action kinetics. For all other kinetics, you must set the SpeciesVariableNames
property of the kinetic law object.

For information on dimensional analysis for reaction rates, see “How Reaction Rates Are
Evaluated”.

Characteristics

Applies to Object: reaction
Data type Kinetic law object
Data values Kinetic law object. Default is [] (empty).
Access Read-only

Examples

Example with Henri-Michaelis-Menten kinetics

1 Create a model object, and then add a reaction object.



3 Properties — Alphabetical List

3-98

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Verify that the KineticLaw property for the reaction object is Henri-Michaelis-
Menten.

get (reactionObj, 'KineticLaw')

MATLAB returns:

SimBiology Kinetic Law Array

 Index:    KineticLawName:

   1       Henri-Michaelis-Menten

See Also

KineticLawName, Parameters, ParameterVariableNames, ReactionRate,
SpeciesVariableNames



 KineticLawName

3-99

KineticLawName
Name of kinetic law applied to reaction

Description

The KineticLawName property of the kinetic law object indicates the name of the kinetic
law definition applied to the reaction. KineticLawName can be any valid name from the
built-in or user-defined kinetic law library. See “Kinetic Law Definition” on page 3-76 for
more information.

You can find the KineticLawName list in the kinetic law library by using the
command sbiowhos -kineticlaw (sbiowhos). You can create a kinetic law
definition with the function sbioabstractkineticlaw and add it to the library using
sbioaddtolibrary.

Characteristics

Applies to Object: kineticlaw
Data type char string

Data values char string specified by kinetic law
definition

Access Read-only

Examples

1 Create a model object, add a reaction object, and define a kinetic law for the reaction
object.
modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

2 Verify the KineticLawName of kineticlawObj.

get (kineticlawObj, 'KineticLawName')



3 Properties — Alphabetical List

3-100

MATLAB returns:

ans =

Henri-Michaelis-Menten

See Also

Expression(AbstractKineticLaw, KineticLaw), Parameters,
ParameterVariableNames, ParameterVariables, ReactionRate,
sbioaddtolibrary, sbiowhos, SpeciesVariables, SpeciesVariableNames



 LagParameter

3-101

LagParameter
Parameter specifying time lag for doses

Description

LagParameter is a property of the PKModelMap object. It specifies the name(s)
of parameter object(s) that represent the time lag(s) of doses associated with the
PKModelMap object.

Specify the name(s) of parameter object(s) that are:

• Scoped to a model
• Constant, that is, their ConstantValue property is true

When dosing multiple compartments, a one-to-one relationship must exist between the
number and order of elements in the LagParameter property and the DosingType
property. For a dose that has no lag, use '' (an empty string). For an example, see
“Dosing Multiple Compartments in a Model”.

Characteristics

Applies to Object: PKModelMap
Data type char string or cell array of strings

Tip If you are not using any doses with time lags, you can set
this property to a cell array of empty strings, or simply an
empty cell array.

Data values Name(s) of parameter object(s) or empty. Default is an empty
cell array.

The parameter objects must be:

• Scoped to a model
• Constant, that is, have a ConstantValue property set to

true.



3 Properties — Alphabetical List

3-102

Access Read/write

See Also

“Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” in the SimBiology User's Guide, DosingType, PKModelMap object



 LagParameterName

3-103

LagParameterName
Parameter specifying time lag for dose

Description

LagParameterName is a property of a RepeatDose or ScheduleDose object.

Specify the name of a parameter object that is:

• Scoped to a model
• Constant, that is, its ConstantValue property is true

The parameter specifies the length of time it takes for the dose to reach its target after
being introduced.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose
Data type char string

Data values Name of a parameter object or empty. Default is an empty string.

The parameter object must be:

• Scoped to a model
• Constant, that is, have a ConstantValue property set to true

Access Read/write

See Also

RepeatDose object, ScheduleDose object



3 Properties — Alphabetical List

3-104

LogDecimation
Specify frequency to log stochastic simulation output

Description

LogDecimation is a property of the SolverOptions property, which is a property
of a configset object. This property defines how often stochastic simulation data is
recorded. LogDecimation is available only for stochastic solvers (ssa, expltau, and
impltau).

Use LogDecimation to specify how frequently you want to record the output of the
simulation. For example, if you set LogDecimation to 1, for the command [t,x] =
sbiosimulate(modelObj), at each simulation step the time will be logged in t and
the quantity of each logged species will be logged as a row in x. If LogDecimation is 10,
then every 10th simulation step will be logged in t and x.

Characteristics

Applies to Object: SolverOptions
Data type int

Data values >0. Default is 1.
Access Read/write

Examples

This example shows how to change LogDecimation settings.

1 Retrieve the configset object from the modelObj, and change the SolverType to
expltau.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);

set(configsetObj, 'SolverType', 'expltau')

2 Change the LogDecimation to 10.



 LogDecimation

3-105

set(configsetObj.SolverOptions, 'LogDecimation', 10);

get(configsetObj.SolverOptions, 'LogDecimation')

ans =

  10

See Also

ErrorTolerance, RandomState



3 Properties — Alphabetical List

3-106

MassUnits
Mass unit used internally during simulation when UnitConversion is on

Description

This property defines the mass unit that SimBiology uses internally during model
simulation when UnitConversion is on. You can set this to any string representing a
mass unit such as gram, or gram with any valid prefix. It can also be a custom unit if
it is consistent with mass as its dimension. The default is <automatic>, which means
SimBiology automatically selects a mass unit for simulation. SimBiology examines the
units on all of the states and selects a mass unit such that AbsoluteTolerance of the
states in mass or mass per volume is at least as stringent as the simulation absolute
tolerance multiplied by the smallest mass unit. This stringency is relaxed appropriately
for states that become large when AbsoluteToleranceScaling is on.

Note: It is recommended that you use the default unit (<automatic>) or choose units for
states such that the simulated values are neither too large (greater than 106) or too small
(less than 10-6).

However, for some edge cases, you may need to change MassUnits. Suppose you have
a model with a state that takes on values around 10-12 gram for the entire simulation,
and you need to use gram as its unit. Then it may be appropriate to set MassUnits to
picogram. In this case, the internal simulation values would be around 1, instead of
around 10-12 as in the default case. AbsoluteTolerance of the simulation is determined
using this internal value. Thus by choosing picogram as the mass unit, you effectively
reduce the size of AbsoluteTolerance. Changing the MassUnits property is closely
related to changing AbsoluteTolerance when considering the effects on simulation
results.

Even when using the default unit, it may be still necessary to change
AbsoluteTolerance. For details, see “Selecting Absolute Tolerance and Relative
Tolerance for Simulation”.

If you need to recover the simulation behavior from releases prior to R2015b:

• Set the MassUnits to kilogram.



 MassUnits

3-107

• Set the AmountUnits to mole. However, if the model has quantity units in
molecule, set the unit to molecule instead.

Tip If you have a custom function and UnitConversion is on (whether or not you are
using the default unit <automatic>), follow the recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not
already dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in
hour and y is the concentration of a species in mole/liter. When you use this function
in your model to define a repeated assignment rule for instance, define it as: s1 =
f(time/t0)*s0, where time is the simulation time, t0 is a parameter defined as
1.0 hour, s0 is a parameter defined as 1.0 mole/liter, and s1 is the concentration of
a species in mole/liter. Note that time and s1 do not have to be in the same units as
t0 and s0, but they must be dimensionally consistent. For example, the time and s1
units can be set to minute and picomole/liter, respectively.

Characteristics

Applies to Object: Configset
Data type string

Data values String specifying any mass unit. The default is <automatic>.
Access Read/write for properties of Configset

See Also

Configset object, AmountUnits



3 Properties — Alphabetical List

3-108

MaximumNumberOfLogs
Maximum number of logs criteria to stop simulation

Description

MaximumNumberOfLogs is a property of a Configset object. This property sets the
maximum number of logs criteria to stop a simulation.

A simulation stops when it meets any of the criteria specified by StopTime,
MaximumNumberOfLogs, or MaximumWallClock. However, if you specify the
OutputTimes property of the SolverOptions property of the Configset object,
then StopTime and MaximumNumberOfLogs are ignored. Instead, the last value in
OutputTimes is used as the StopTime criteria, and the length of OutputTimes is used
as the MaximumNumberOfLogs criteria.

Characteristics

Applies to Object: Configset
Data type double

Data values Positive value. Default is Inf.
Access Read/write

Examples

Set Maximum Number of Logs Criteria to Stop Simulation

Set the maximum number of logs that triggers a simulation to stop.

Create a model object named cell and save it in a variable named modelObj.

modelObj  = sbiomodel('cell');

Retrieve the configuration set from modelObj and save it in a variable named
configsetObj.



 MaximumNumberOfLogs

3-109

configsetObj = getconfigset(modelObj);

Configure the simulation stop criteria by setting the MaximumNumberOfLogs property
to 50. Leave the StopTime and MaximumWallClock properties at their default values of
10 seconds and Inf, respectively.

set(configsetObj, 'MaximumNumberOfLogs', 50)

View the properties of configsetObj.

get(configsetObj)

                        Active: 1

                CompileOptions: [1x1 SimBiology.CompileOptions]

                          Name: 'default'

                         Notes: ''

                RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

    SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]

                 SolverOptions: [1x1 SimBiology.ODESolverOptions]

                    SolverType: 'ode15s'

                      StopTime: 10

           MaximumNumberOfLogs: 50

              MaximumWallClock: Inf

                     TimeUnits: 'second'

                          Type: 'configset'

When you simulate modelObj, the simulation stops when 50 logs are created or when
the simulation time reaches 10 seconds, whichever comes first.

See Also

Configset object, MaximumWallClock, OutputTimes, StopTime



3 Properties — Alphabetical List

3-110

MaximumWallClock
Maximum elapsed wall clock time to stop simulation

Description

MaximumWallClock is a property of a Configset object. This property sets the
maximum elapsed wall clock time (seconds) criteria to stop a simulation.

A simulation stops when it meets any of the criteria specified by StopTime,
MaximumNumberOfLogs, or MaximumWallClock. However, if you specify the
OutputTimes property of the SolverOptions property of the Configset object,
then StopTime and MaximumNumberOfLogs are ignored. Instead, the last value in
OutputTimes is used as the StopTime criteria, and the length of OutputTimes is used
as the MaximumNumberOfLogs criteria.

Characteristics

Applies to Object: Configset
Data type double

Data values Positive scalar. Default is Inf.
Access Read/write

Examples

Set Maximum Wall Clock Criteria to Stop Simulation

Set the maximum wall clock time (in seconds) that triggers a simulation to stop.

Create a model object named cell and save it in a variable named modelObj.

modelObj  = sbiomodel('cell');

Retrieve the configuration set from modelObj and save it in a variable named
configsetObj.



 MaximumWallClock

3-111

configsetObj = getconfigset(modelObj);

Configure the simulation stop criteria by setting the MaximumWallClock property to 20
seconds. Leave the StopTime and MaximumNumberOfLogs properties at their default
values of 10 seconds and Inf, respectively.

set(configsetObj, 'MaximumWallClock', 20)

View the properties of configsetObj.

get(configsetObj)

                        Active: 1

                CompileOptions: [1x1 SimBiology.CompileOptions]

                          Name: 'default'

                         Notes: ''

                RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

    SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]

                 SolverOptions: [1x1 SimBiology.ODESolverOptions]

                    SolverType: 'ode15s'

                      StopTime: 10

           MaximumNumberOfLogs: Inf

              MaximumWallClock: 20

                     TimeUnits: 'second'

                          Type: 'configset'

When you simulate modelObj, the simulation stops when the simulation time reaches
10 seconds or the wall clock time reaches 20 seconds, whichever comes first.

See Also

Configset object, MaximumNumberOfLogs, OutputTimes, StopTime



3 Properties — Alphabetical List

3-112

MaxIterations
Specify nonlinear solver maximum iterations in implicit tau

Description

The MaxIterations property specifies the maximum number of iterations for
the nonlinear solver in impltau. It is a property of the SolverOptions object.
SolverOptions is a property of the configset object.

The implicit tau solver in SimBiology software internally uses a nonlinear solver to
solve a set of algebraic nonlinear equations at every simulation step. Starting with an
initial guess at the solution, the nonlinear solver iteratively tries to find the solution
to the algebraic equations. The closer the initial guess is to the solution, the fewer the
iterations the nonlinear solver will take before it finds a solution. MaxIterations
specifies the maximum number of iterations the nonlinear solver should take before it
issues a “failed to converge” error. If you get this error during simulation, try increasing
MaxIterations. The default value of MaxIterations is 15.

Characteristics

Applies to Object: SolverOptions
Data type int

Data values >0. Default is 15.
Access Read/write

Examples

This example shows how to change MaxIterations settings.

1 Retrieve the configset object from the modelObj, and change the SolverType to
impltau.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);



 MaxIterations

3-113

set(configsetObj, 'SolverType', 'impltau');

2 Change the MaxIterations to 25.

set(configsetObj.SolverOptions, 'MaxIterations', 25);

get(configsetObj.SolverOptions, 'MaxIterations')

ans =

  25

See Also

ErrorTolerance, LogDecimation, RandomState



3 Properties — Alphabetical List

3-114

MaxStep
Specify upper bound on ODE solver step size

Description

MaxStep is a property of the SolverOptions property, which is a property of a
configset object. This property specifies the bounds on the size of the time steps.
MaxStep is available only for ODE solvers (ode15s, ode23t, ode45, and sundials).

If the differential equation has periodic coefficients or solutions, it might be a good idea
to set MaxStep to some fraction (such as 1/4) of the period. This guarantees that the
solver does not enlarge the time step too much and step over a period of interest. For
more information on MaxStep, see odeset in the MATLAB documentation.

Characteristics

Applies to Object: SolverOptions
Data type Positive scalar or empty
Data values Default value is [] (empty), which is equivalent to setting

MaxStep to infinity.
Access Read/write

See Also

SimBiology property RelativeTolerance

MATLAB function odeset



 ModelName

3-115

ModelName
Name of model simulated

Description

The ModelName property shows the name of the model for which the SimData object
contains the simulation data.

Characteristics

Applies to Object: SimData
Data type string

Data values Default value is '' (empty).
Access Read-only

See Also

Data, DataInfo



3 Properties — Alphabetical List

3-116

Models
Contain all model objects

Description

The Models property shows the models in the SimBiology root. It is a read-only array of
model objects.

SimBiology has a hierarchical organization. A model object has the SimBiology root as
its Parent. Parameter objects can have a model object or kinetic law object as Parent.
You can display all the component objects with modelObj.Models or get (modelObj,
'Models').

Characteristics

Applies to Objects: root
Data type Array of model objects
Data values Model object. Default is [] (empty).
Access Read-only

See Also

sbiomodel



 Multiplier

3-117

Multiplier
Relationship between defined unit and base unit

Description

The Multiplier is the numerical value that defines the relationship between the unit
Name and the base unit as a product of the Multiplier and the base unit. For example,
in °Celsius = (5/9)*(°Fahrenheit-32); Multiplier is 5/9 and Offset is -32.
For 1 mole = 6.0221e23*molecule, the Multiplier is 6.0221e23.

Characteristics

Applies to Object: Unit
Data type double

Data values Nonzero real number. Default value is 1.
Access Read/write

Examples

This example shows how to create a user-defined unit, add it to the user-defined library,
and query the library.

1 Create a user-defined unit called usermole, whose composition is molecule and
Multiplier property is 6.0221e23.

unitObj = sbiounit('usermole', 'molecule', 6.0221e23); 

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

3 Query the Multiplier property.

get(unitObj, 'Multiplier')

ans =



3 Properties — Alphabetical List

3-118

1/molarity*second

See Also

Composition, get, Offset, sbiounit, set



 Name

3-119

Name
Specify name of object

Description

The Name property identifies a SimBiology object. Compartments, species, parameters,
and model objects can be referenced by other objects using the Name property, therefore
Name must be unique for these objects. However, species names need only be unique
within each compartment. Parameter names must be unique within a model (if at the
model level), or within each kinetic law (if at the kinetic law level). This means that
you can have nonunique species names if the species are in different compartments,
and nonunique parameter names if the parameters are in different kinetic laws or at
different levels. Note that having nonunique parameter names can cause the model
to have shadowed parameters and that may not be best modeling practice. For more
information on levels of parameters, see “Scope of Parameter Objects”.

Use the function sbioselect to find an object with the same Name property value.

In addition, note the following constraints and reserved characters for the Name property
in objects:

• Model and parameter names cannot be empty, the word time, all whitespace, or
contain the characters [ or ].

• Compartment and species names cannot be empty, the word null, the word time or
contain the characters ->, <->, [ or ].

• However, compartment and species names can contain the words null and time
within the name, such as nulldrug or nullreceptor.

• Reaction, event, and rule names cannot be the word time or contain the characters [
or ].

• If you have a parameter, a species, or compartment name that is not a valid MATLAB
variable name, when you write an event function, an event trigger, a reaction,
reaction rate equation, or a rule you must enclose that name in brackets. For
example, enclose [DNA polymerase+] in brackets. In addition, if you have the same
species in multiple compartments you must qualify the species with the compartment
name, for example, nucleus.[DNA polymerase+], [nuclear complex].[DNA
polymerase+].



3 Properties — Alphabetical List

3-120

For more information on valid MATLAB variable names, see
matlab.lang.makeValidName, matlab.lang.makeUniqueStrings, and isvarname.

Characteristics

Applies to Objects: abstract kinetic law, configuration set, compartment,
event, kinetic law, model, parameter, reaction, RepeatDose,
rule, ScheduleDose, species, unit, or variant

Data type char string

Data values Any char string except reserved words and characters
Access Read/write

Examples

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add a reaction object to the model object. Note the use of brackets because the names
are not valid MATLAB variable names.
reactionObj = addreaction(modelObj, '[Aspartic acid] -> [beta-Aspartyl-PO4]')

MATLAB returns:

SimBiology Reaction Array

Index:    Reaction:

  1       [Aspartic acid] -> [beta-Aspartyl-PO4]

3 Set the reaction Name and verify.

set (reactionObj, 'Name', 'Aspartate kinase reaction');

get (reactionObj, 'Name')

MATLAB returns:

ans =

  Aspartate kinase reaction



 Name

3-121

See Also

addcompartment, addkineticlaw, addparameter, addreaction, addrule,
addspecies, RepeatDose object, sbiomodel, sbiounit, sbiounitprefix,
ScheduleDose object



3 Properties — Alphabetical List

3-122

Normalization
Specify normalization type for sensitivity analysis

Description

Normalization is a property of the SensitivityAnalysisOptions object.
SensitivityAnalysisOptions is a property of the configuration set object. Use
Normalization to specify the normalization for the computed sensitivities.

The following values let you specify the type of normalization. The examples show you
how sensitivities of a species x with respect to a parameter k are calculated for each
normalization type:

• ’None’ specifies no normalization.

∂

∂

x t

k

( )

• ’Half' specifies normalization relative to the numerator (species quantity) only.

1

x t

x t

k( )

( )Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

• ’Full’ specifies that the data should be made dimensionless.

k

x t

x t

k( )

( )Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

Characteristics

Applies to Object: SensitivityAnalysisOptions
Data type enum

Data values 'None', 'Half', 'Full'. Default is 'None'.
Access Read/write



 Normalization

3-123

See Also

Inputs, Outputs, SensitivityAnalysis, SensitivityAnalysisOptions



3 Properties — Alphabetical List

3-124

Notes

HTML text describing SimBiology object

Description

Use the Notes property of an object to store comments about the object. You can include
HTML tagging in the notes to render formatted text in the SimBiology desktop.

Characteristics

Applies to Objects: compartment, kinetic law, model, parameter,
reaction, RepeatDose, rule, ScheduleDose, species, unit, or
unit prefix

Data type char string

Data values Any char string
Access Read/write

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Write notes for the model object.

set (modelObj, 'notes', '09/01/05 experimental data')

3 Verify the assignment.

get (modelObj, 'notes')

MATLAB returns:

ans =

09/01/05 experimental data



 Notes

3-125

See Also

addkineticlaw, addparameter, addreaction, addrule, addspecies, RepeatDose
object, sbiomodel, sbiounit, sbiounitprefix, ScheduleDose object



3 Properties — Alphabetical List

3-126

Observed
Measured response object name

Description

Observed is a property of the PKModelMap object. It specifies the name(s) of one or
more objects that represent the measured response (the response variable). Specify the
name(s) of species or parameter object(s) that are scoped to a model.

Characteristics

Applies to Object: PKModelMap
Data type char string or cell array of strings
Data values Name of a species or parameter object or empty. Default is an

empty cell array.
Access Read/write

See Also

“Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” in the SimBiology User's Guide, Dosed, Estimated, PKModelMap object



 Offset

3-127

Offset
Unit composition modifier

Description

Note: The Offset property is currently not supported.

The Offset is the numerical value by which the unit composition is modified from the
base unit. For example, °Celsius = (5/9)*(°Fahrenheit-32); Multiplier is 5/9
and Offset is -32.

Characteristics

Applies to Object: Unit
Data type double

Data values Real number. Default is 0.
Access Read/write

Examples

This example shows how to create a user-defined unit, add it to the user-defined library,
and query the library.

1 Create a user-defined unit called celsius2, whose composition refers to
fahrenheit, Multiplier property is 9/5, and Offset property is 32.

unitObj = sbiounit('celsius2','fahrenheit',9/5,32); 

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

3 Query the Offset property.



3 Properties — Alphabetical List

3-128

get(unitObj, 'Offset')

ans =

32

See Also

Composition, get, Multiplier, sbioaddtolibrary, sbioshowunits, sbiounit,
set



 Outputs

3-129

Outputs
Specify species and parameter outputs for sensitivity analysis

Description

Outputs is a property of the SensitivityAnalysisOptions object.
SensitivityAnalysisOptions is a property of the configuration set object.

Use Outputs to specify the species and parameters for which you want to compute
sensitivities.

The SimBiology software calculates sensitivities with respect to the values of the
parameters and the initial amounts of the species specified in the Inputs property.
When you simulate a model with SensitivityAnalysis enabled in the active
configuration set object, sensitivity analysis returns the computed sensitivities of the
species and parameters specified in Outputs. For a description of the output, see the
SensitivityAnalysisOptions property description.

Characteristics

Applies to Object: SensitivityAnalysisOptions
Data type Species or parameter object or array of objects

Note: If a species or parameter object is determined by a
repeated assignment rule, then you cannot use it as an
Outputs property.

Data values Species or parameter object, or an array of objects.
Default is [] (empty array).

Access Read/write

Examples

This example shows how to set Outputs for sensitivity analysis.



3 Properties — Alphabetical List

3-130

1 Import the radio decay model from the SimBiology demos.

modelObj  = sbmlimport('radiodecay');

2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);

3 Add a species to the Outputs property and display it. Use the sbioselect function
to retrieve the species object from the model.

SimBiology Species Array

Index:  Compartment:  Name:  InitialAmount: InitialAmountUnits:

  1       unnamed      z        0              molecule

See Also

Inputs, sbioselect, SensitivityAnalysis, SensitivityAnalysisOptions



 OutputTimes

3-131

OutputTimes

Specify times to log deterministic simulation output

Description

OutputTimes is a property of the SolverOptions property, which is a property of
a Configset object. This property specifies the times during a deterministic (ODE)
simulation that data is recorded. Time units are specified by the TimeUnits property of
the Configset object. OutputTimes is available only for ODE solvers (ode15s, ode23t,
ode45, and sundials).

If the criteria set in the MaximumWallClock property causes a simulation to stop before
all time values in OutputTimes are reached, then no data is recorded for the latter time
values.

The OutputTimes property can also control when a simulation stops:

• The last value in OutputTimes overrides the StopTime property as criteria for
stopping a simulation.

• The length of OutputTimes overrides the MaximumNumberOfLogs property as
criteria for stopping a simulation.

Characteristics

Applies to Object: SolverOptions
Data type double

Data values Vector of nonnegative, monotonically increasing values, or [], an
empty vector. Default is [], which results in data being logged
every time the simulation solver takes a step.

Access Read/write



3 Properties — Alphabetical List

3-132

Examples

Specify Times to Log Deterministic Simulation Output

Specify the times during a deterministic (ODE) simulation that data is recorded.

Create a model object named cell and save it in a variable named modelObj.

modelObj  = sbiomodel('cell');

Retrieve the configuration set from modelObj and save it in a variable named
configsetObj.

configsetObj = getconfigset(modelObj);

Specify to log output every second for the first 10 seconds of the simulation. Do this by
setting the OutputTimes property of the SolverOptions property of ConfigsetObj.

set(configsetObj.SolverOptions, 'OutputTimes', [1:10])

get(configsetObj.SolverOptions, 'OutputTimes')

ans =

   1     2     3     4     5     6     7     8     9    10

When you simulate modelObj, output is logged every second for the first 10 seconds of
the simulation. Also, the simulation stops after the 10th log.

See Also

MaximumNumberOfLogs, MaximumWallClock, SolverOptions, StopTime,
TimeUnits, MassUnits, AmountUnits



 Owner

3-133

Owner
Owning compartment

Description

Owner shows you the SimBiology compartment object that owns the compartment object.
In the compartment object, the Owner property shows you whether the compartment
resides within another compartment. The Compartments property indicates whether
other compartments reside within the compartment. You can add a compartment object
using the method addcompartment.

Characteristics

Applies to Object: compartment
Data type char string

Data values Name of compartment object. Default is [].
Access Read-only

Examples

1 Create a model object named modelObj.

modelObj = sbiomodel('cell');

2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');

compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');

4 Display the Owner property in the compartment objects.

get(compartmentObj3, 'Owner')



3 Properties — Alphabetical List

3-134

The result shows you the owning compartment and its components:

SimBiology Compartment - mitochondrion 

   Compartment Components:

     Capacity:          1

     CapacityUnits:     

     Compartments:      1

     ConstantCapacity:  true

     Owner:             

     Species:           0

5 Change the owning compartment.

set(compartmentObj3, 'Owner', compartmentObj1)

See Also

Compartments, Parent



 ParameterNames (CovariateModel)

3-135

ParameterNames (CovariateModel)
Names of parameters in CovariateModel object

Description

The ParameterNames property is a cell array of strings specifying the names of the
parameters in the Expression (CovariateModel) property of a CovariateModel
object.

Characteristics

Applies to Object: CovariateModel object
Data type Cell array of strings
Data values Names of the parameters in the

Expression (CovariateModel)

property
Access Read only

See Also
CovariateModel object | Expression (CovariateModel)



3 Properties — Alphabetical List

3-136

Parameters
Array of parameter objects

Description

The Parameters property indicates the parameters in a Model or KineticLaw object.
Read-only array of Parameter objects.

The scope of a parameter object is hierarchical and is defined by the parameter’s parent.
If a parameter is defined with a kinetic law object as its parent, then only the kinetic law
object can use the parameter. If a parameter object is defined with a model object as its
parent, then components such as rules, events, and kinetic laws (reaction rate equations)
can use the parameter.

You can add a parameter to a model object, or kinetic law object with the method
addparameter and delete it with the method delete.

You can view parameter object properties with the get command and configure
properties with the set command.

Characteristics

Applies to Objects: model, kineticlaw
Data type Array of parameter objects
Data values Parameter objects. Default value is [] (empty).
Access Read-only

Examples

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.



 Parameters

3-137

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

3 Add a parameter and assign it to the kinetic law object (kineticlawObj);.

parameterObj1 = addparameter (kineticlawObj, 'K1');

get (kineticlawObj, 'Parameters')

SimBiology Parameter Array

Index:    Name:    Value:    ValueUnits:

 1         K1       1  

4 Add a parameter and assign it to the model object (modelObj).

parameterObj1 = addparameter(modelObj, 'K2');

get(modelObj, 'Parameters')

SimBiology Parameter Array

 Index:    Name:    Value:    ValueUnits:

   1         K2       1   

See Also

addparameter, delete, get, set



3 Properties — Alphabetical List

3-138

ParameterVariableNames

Cell array of reaction rate parameters

Description

The ParameterVariableNames property shows the parameters used by the kinetic
law object to determine the ReactionRate equation in the reaction object. Use
setparameter to assign ParameterVariableNames. When you assign species to
ParameterVariableNames, SimBiology software maps these parameter names to
ParameterVariables in the kinetic law object.

If the reaction is using a kinetic law, the ReactionRate property of a reaction
object shows the result of a mapping from a “Kinetic Law Definition” on page
3-76. The ReactionRate is determined by the kinetic law object Expression
property by mapping ParameterVariableNames to ParameterVariables and
SpeciesVariableNames to SpeciesVariables.

Characteristics

Applies to Object: kineticlaw
Data type Cell array of strings
Data values Cell array of parameters
Access Read/write

Examples

Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction
rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');



 ParameterVariableNames

3-139

2 Create a kinetic law object for the reaction object of type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and

Km) that should to be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');

setparameter(kineticlawObj,'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns:

ans = 

    'Va'    'Ka'

See Also

Expression(AbstractKineticLaw, KineticLaw), ParameterVariables,
ReactionRate, setparameter, SpeciesVariables, SpeciesVariableNames



3 Properties — Alphabetical List

3-140

ParameterVariables
Parameters in kinetic law definition

Description

The ParameterVariables property shows the parameter variables that are used
in the Expression property of the abstract kinetic law object. Use this property to
specify the parameters in the ReactionRate equation. Use the method set to assign
ParameterVariables to a kinetic law definition. For more information, see “Kinetic
Law Definition” on page 3-76.

Characteristics

Applies to Objects: abstract kinetic law, kineticlaw
Data type Cell array of strings
Data values Specified by kinetic law definition
Access Read/write in kinetic law definition. Read-only in kinetic law.

Examples

Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction
rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-
Menten' .
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables. To set

these variables:



 ParameterVariables

3-141

get (kineticlawObj, 'ParameterVariables')

MATLAB returns:

ans = 

    'Vm' 'Km'

See Also

Expression(AbstractKineticLaw, KineticLaw), ParameterVariableNames,
ReactionRate, set, setparameter, SpeciesVariables, SpeciesVariableNames



3 Properties — Alphabetical List

3-142

Parent
Indicate parent object

Description
The Parent property indicates the parent object for a SimBiology object (read-only).
The Parent property indicates accessibility of the object. The object is accessible to the
Parent object and other objects within the Parent object. The value of Parent depends
on the type of object and how it was created. All models always have the SimBiology root
as the Parent.

More Information

The following table shows you the different objects and the possible Parent value.

Object Parent

abstract kinetic law • [] (empty) until added to library
• root object upon addition to library

compartment model object
event model object or [] (empty)
kinetic law reaction object
model root object
parameter model object, kinetic law object, or []

(empty)
reaction model object or [] (empty)
RepeatDose model object or [] (empty)
rule model object or [] (empty)
ScheduleDose model object or [] (empty)
species compartment
variant model object or [] (empty)
unit and unit prefixes • [] (empty) until added to library

• root object upon addition to library



 Parent

3-143

Characteristics

Applies to Objects: abstract kinetic law, compartment, event, kinetic
law, model, parameter, reaction, RepeatDose, rule,
ScheduleDose, species, variant, unit, or unit prefix

Data type Object
Data values SimBiology component object or [] (empty)
Access Read-only

See Also

addkineticlaw, addparameter, addreaction, RepeatDose object, sbiomodel,
ScheduleDose object



3 Properties — Alphabetical List

3-144

PKCompartments
Hold compartments in PK model

Description

PKCompartments is a property of the PKModelDesign object. It is used to specify the
compartments in the PKModelDesign object. Each compartment is a PKCompartment
object added using the addCompartment method.

Characteristics

Applies to Objects: PKModelDesign
Data type object
Data values PKCompartment object
Access Read-only

See Also

“Create Pharmacokinetic Models” in the SimBiology User's Guide, addCompartment,
PKCompartment object, PKModelDesign object



 Products

3-145

Products
Array of reaction products

Description

The Products property contains an array of SimBiology.Species objects.

Products is a 1-by-n species object array that indicates the species that are changed
by the reaction. If the Reaction property is modified to use a different species, the
Products property is updated accordingly.

You can add product species to the reaction with addproduct function. You can remove
product species from the reaction with rmproduct. You can also update reaction
products by setting the Reaction property with the function set.

Characteristics

Applies to Object: reaction
Data type Array of objects
Data values Species objects. Default is [] (empty).
Access Read-only

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction objects.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

3 Verify the assignment.

productsObj = get(reactionObj, 'Products')



3 Properties — Alphabetical List

3-146

MATLAB returns:

SimBiology Species Array

Index:  Compartment:  Name:  InitialAmount: InitialAmountUnits:

 1       unnamed        c        0                 

 2       unnamed        d        0                 

See Also

addkineticlaw, addproduct, addspecies, rmproduct



 RandomEffectNames (CovariateModel)

3-147

RandomEffectNames (CovariateModel)
Names of random effects in CovariateModel object

Description

The RandomEffectNames property is a cell array of strings specifying the names of the
random effects in the Expression (CovariateModel) property of a CovariateModel
object. Names of random effects are denoted with the prefix eta.

Characteristics

Applies to Object: CovariateModel object
Data type Cell array of strings
Data values Names of the random effects in the

Expression (CovariateModel)

property. These name are denoted with the
prefix eta.

Access Read only

See Also
CovariateModel object | Expression (CovariateModel)



3 Properties — Alphabetical List

3-148

RandomState
Set random number generator

Description

The RandomState property sets the random number generator for the stochastic solvers.
It is a property of the SolverOptions object. SolverOptions is a property of the
configset object.

SimBiology software uses a pseudorandom number generator. The sequence of numbers
generated is determined by the state of the generator, which can be specified by the
integer RandomState. If RandomState is set to integer J, the random number generator
is initialized to its Jth state. The random number generator can generate all the floating-
point numbers in the closed interval [2^(-53), 1-2^(-53)]. Theoretically, it can
generate over 2^1492 values before repeating itself. But for a given state, the sequence
of numbers generated will be the same. To change the sequence, change RandomState.
SimBiology software resets the state at startup. The default value of RandomState is [].

Characteristics

Applies to Objects: SolverOptions for SSA, expltau, impltau
Data type int

Data values Default is [] (empty).
Access Read/write

Examples

This example shows how to change RandomState settings.

1 Retrieve the configset object from the modelObj and change the SolverType to
expltau.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);



 RandomState

3-149

set(configsetObj, 'SolverType', 'expltau')

2 Change the Randomstate to 5.

set(configsetObj.SolverOptions, 'RandomState', 5);

get(configsetObj.SolverOptions, 'RandomState'))

ans =

  5

See Also

ErrorTolerance, LogDecimation, MaxIterations



3 Properties — Alphabetical List

3-150

Rate
Rate of dose

Description

Rate is a property of a RepeatDose or ScheduleDose object.

This property defines how fast a dose is given.

Note: If you set the Rate property of a dose, you must also specify the Amount property
of the dose, and set the DurationParameterName property to ''. This is because the
duration is calculated from the amount and rate.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose
Data type double (RepeatDose) or double array (ScheduleDose)
Data values Nonnegative real number. Default is 0 (RepeatDose) or []

(ScheduleDose).
Access Read/write

See Also

RepeatDose object, ScheduleDose object



 RateUnits

3-151

RateUnits
Units for dose rate

Description

RateUnits is a property of a PKData, RepeatDose or ScheduleDose object.

• In RepeatDose or ScheduleDose objects, this property defines units for the Rate
property.

• In PKData object, this property defines units for the RateLabel property.

Characteristics

Applies to Object: RepeatDose, ScheduleDose, PKData
Data type string
Data values Units from library with dimensions of amount divided by

time. You cannot use units of concentration divided by time.
Default = '' (empty).

Access Read/write

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to
consistent units. Hence, you must specify consistent units, and no unit strings can



3 Properties — Alphabetical List

3-152

be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

See Also

PKData object, ScheduleDose object, RepeatDose object, Rate, RateLabel



 RateLabel

3-153

RateLabel
Rate of infusion column in data set

Description

RateLabel is a property of the PKData object. It specifies the column in DataSet that
contains the rate of infusion. This applies only when dosing type is infusion. The data
set must contain the rate and not an infusion time. The values must be positive and the
column cannot contain Inf or –Inf. 0 specifies an infinite rate (equivalent to a bolus
dose), and NaN specifies no rate.

Characteristics

Applies to Objects: PKData
Data type char string

Data values Column header string
Access Read/write

See Also

“Specify and Classify the Data to Fit” in the SimBiology User's Guide, PKData object,
DosingType



3 Properties — Alphabetical List

3-154

Reactants
Array of reaction reactants

Description

The Reactants property is a 1-by-n species object array of reactants in the reaction. If
the Reaction property is modified to use a different reactant, the Reactants property
will be updated accordingly.

You can add reactant species to the reaction with the addreactant method.

You can remove reactant species from the reaction with the rmreactant method. You
can also update reactants by setting the Reaction property with the function set.

Characteristics

Applies to Object: reaction
Data type Species object or array of species objects
Data values Species objects. Default is [] (empty).
Access Read-only

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction objects.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

3 View the reactants for reactionObj.

get(reactionObj, 'Reactants')

MATLAB returns:



 Reactants

3-155

SimBiology Species Array

Index:  Compartment:  Name:  InitialAmount: InitialAmountUnits:

 1       unnamed        a        0                 

 2       unnamed        b        0                 

See Also

addreactant, addreaction, addspecies, rmreactant



3 Properties — Alphabetical List

3-156

Reaction

Reaction object reaction

Description

Property to indicate the reaction represented in the reaction object. Indicates the
chemical reaction that can change the amount of one or more species, for example, 'A +
B –> C'. This property is different from the model object property called Reactions.

See addreaction for more information on how the Reaction property is set.

Characteristics

Applies to Object: reaction
Data type char string

Data values Valid reaction string. Default is '' (empty).
Access Read/write

Examples

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Verify that the reaction property records the input.

get (reactionObj, 'Reaction')

MATLAB returns:

ans =

a + b -> c + d



 Reaction

3-157

See Also

addreaction



3 Properties — Alphabetical List

3-158

ReactionRate
Reaction rate equation in reaction object

Description

The ReactionRate property defines the reaction rate equation. You can define a
ReactionRate with or without the KineticLaw property. KineticLaw defines the
type of reaction rate. The addkineticlaw function configures the ReactionRate based
on the KineticLaw and the species and parameters specified in the kinetic law object
properties SpeciesVariableNames and ParameterVariableNames.

The reaction takes place in the reverse direction if the Reversible property is true. This
is reflected in ReactionRate. The ReactionRate includes the forward and reverse rate
if reversible.

You can specify ReactionRate without KineticLaw. Use the set function to specify
the reaction rate equation. SimBiology software adds species variables while creating
reactionObj using the addreaction method. You must add the parameter variables
(to the modelObj in this case). See the example below.

After you specify the ReactionRate without KineticLaw and you later configure
the reactionObj to use KineticLaw, the ReactionRate is unset until you specify
SpeciesVariableNames and ParameterVariableNames.

For information on dimensional analysis for reaction rates, see “How Reaction Rates Are
Evaluated” .

Note: If you set the ReactionRate property to an expression that is not continuous and
differentiable, see “Using Events to Address Discontinuities in Rule and Reaction Rate
Expressions” before simulating your model.

Characteristics

Applies to Object: reaction
Data type char string



 ReactionRate

3-159

Data values Reaction rate string. Default is '' (empty).
Access Read/write

Examples

Add a Reaction Defined by Michaelis-Menten Kinetic Law

Create a model, add a reaction, and assign the expression for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm

and Km) and one species variable (S) that you should set. To set these variables,
first create the parameter variables as parameter objects (parameterObj1,
parameterObj2) with names Vm_d and Km_d and assign them to kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');

parameterObj2 = addparameter(kineticlawObj, 'Km_d');

4 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});

set(kineticlawObj,'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction object
ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =



3 Properties — Alphabetical List

3-160

Vm_d*a/(Km_d + a)

Add a Reaction without a Kinetic Law

Create a model, add a reaction, and specify ReactionRate without a kinetic law.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a + b -> c + d');

2 Specify ReactionRate and verify the assignment.

set (reactionObj, 'ReactionRate', 'k*a');

get(reactionObj, 'ReactionRate')

MATLAB returns:

ans =

k*a

3 You cannot simulate the model until you add the parameter k to the modelObj.

parameterObj = addparameter(modelObj, 'k');

SimBiology adds the parameter to the modelObj with default Value = 1.0 for the
parameter.

Define a Custom Hill Kinetic Law that Works with Dimensional Analysis

This example shows how to define a custom reaction rate for the Hill kinetics that is
compatible with DimensionalAnalysis feature of SimBiology.

This example is useful especially if you are using the built-in Hill kinetic law, but have
the kinetic reaction with a non-integer exponent and cannot verify the model because
dimensional analysis failed. The built-in Hill kinetic law has the following expression:

V S

K S

m
n

p
n

*

+

. Suppose K Kp h
n

= , then you can rewrite the equation as follows: 

V

K

S

m

h

nÊ
ËÁ

ˆ
¯̃

+1 .

The redefined Hill kinetic equation is compatible with Dimensional Analysis and allows
you to have a non-integer exponent.



 ReactionRate

3-161

Create a SimBiology model.

m1 = sbiomodel('m1');

Add a compartment, two species, and a reaction.

c1 = addcompartment(m1, 'cell');

s1 = addspecies(m1,'a');

s2 = addspecies(m1,'b');

r1 = addreaction(m1, 'a -> b');

Add a predefined a Hill kinetic law for the reaction.

k1 = addkineticlaw(r1, 'Hill-Kinetics');

Display the rate expression of the built-in kinetic law.

k1.Expression

ans =

Vm*S^n/(Kp + S^n)

Define parameters, values, and units.

p1 = addparameter(k1, 'Vm', 1.0);

p2 = addparameter(k1, 'n', 1.5);

p3 = addparameter(k1, 'Kp', 2.828);

set(k1, 'ParameterVariableNames', {'Vm','n','Kp'});

set(k1, 'SpeciesVariableNames', {'a'});

set(s1, 'InitialAmount', 2.0);

set(s1, 'InitialAmountUnits', 'mole/liter');

set(s2, 'InitialAmountUnits', 'mole/liter');

set(c1, 'CapacityUnits', 'liter');

set(p1, 'ValueUnits', 'mole/liter/second');

set(p2, 'ValueUnits', 'dimensionless');

set(p3, 'ValueUnits', 'mole/liter');

Verify the model.

verify(m1)

Error using SimBiology.Model/verify



3 Properties — Alphabetical List

3-162

--> Error reported from Dimensional Analysis:

Dimensional analysis failed for reaction 'a -> b'.

When using the power function, both the base and exponent must be dimensionless or the exponent must be an explicit

integer constant (for example 2 in 'x^2').

You are seeing the error message because SimBiology only allows exponentiation of any
dimensionless quantity to any dimensionless power.

Redefine the reaction rate so that it is compatible with dimensional analysis and allows a
non-integer exponent.

r1.ReactionRate = 'Vm / ( (Kh/a)^n + 1 )';

k1.KineticLaw = 'Unknown';

Define the value and units for Kh parameter.

p4 = addparameter(k1, 'Kh', 2.0);

set(p4, 'ValueUnits', 'mole/liter');

Verify the model.

verify(m1)

You no longer see the error message.

Simulate the model.

[t,x,names] = sbiosimulate(m1);

Plot the results.

plot(t,x);

xlabel('Time');

ylabel('Amount');

legend(names);



 ReactionRate

3-163

See Also

addparameter, addreaction, Reversible



3 Properties — Alphabetical List

3-164

Reactions
Array of reaction objects

Description

Property to indicate the reactions in a Model object. Read-only array of reaction objects.

A reaction object defines a chemical reaction that occurs between species. The species for
the reaction are defined in the Model object property Species.

You can add a reaction to a model object with the method addreaction, and you can
remove a reaction from the model object with the method delete.

Characteristics

Applies to Object: model
Data type Array of reaction objects
Data values Reaction object
Access Read-only

Examples

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Verify that the reactions property records the input.

get (modelObj, 'Reactions')

MATLAB returns:

SimBiology Reaction Array

 Index:    Reaction:



 Reactions

3-165

   1       a + b -> c + d

See Also

addreaction, delete



3 Properties — Alphabetical List

3-166

RelativeTolerance
Allowable error tolerance relative to state value during a simulation

Description

RelativeTolerance is a property of the SolverOptions object, which is a property
of a Configset object. It is available for the ode solvers (ode15s, ode23t, ode45, and
sundials).

The RelativeTolerance property specifies the allowable error tolerance relative to
the state vector at each simulation step. The state vector contains values for all the state
variables, for example, amounts for all the species.

If you set the RelativeTolerance at 1e-2, you are specifying that an error of 1%
relative to each state value is acceptable at each simulation step.

For details, see “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

Characteristics

Applies to Object: SolverOptions
Data type double

Data values Positive scalar that is <1. Default is 1e-3.
Access Read/write

Examples

This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.



 RelativeTolerance

3-167

set(configsetObj.SolverOptions, 'RelativeTolerance', 1.0e-6);

get(configsetObj.SolverOptions, 'RelativeTolerance')

ans =

  1.0000e-006

See Also

AbsoluteTolerance, MassUnits, AmountUnits, Configset object

More About
• “Model Simulation”
• “Choosing a Simulation Solver”
• “Ordinary Differential Equations”



3 Properties — Alphabetical List

3-168

RepeatCount
Dose repetitions

Description

RepeatCount is a property of a RepeatDose object. This property defines the number of
doses after the initial dose in a repeat dose series.

Note: When the Interval property is 0, RepeatDose ignores the RepeatCount
property, that is, it treats it as though it is set to 0.

Characteristics

Applies to Object: RepeatDose
Data type double

Data values Nonnegative integer. Default is 0
Access Read/Write

See Also

ScheduleDose object and RepeatDose object



 Reversible

3-169

Reversible

Specify whether reaction is reversible or irreversible

Description

The Reversible property defines whether a reaction is reversible or irreversible. The
rate of the reaction is defined by the ReactionRate property. For a reversible reaction,
the reaction rate equation is the sum of the rate of the forward and reverse reactions.
The type of reaction rate is defined by the KineticLaw property. If a reaction is changed
from reversible to irreversible or vice versa after KineticLaw is assigned, the new
ReactionRate is determined only if Type is MassAction. All other Types result in
unchanged ReactionRate. For MassAction, the first parameter specified is assumed to
be the rate of the forward reaction.

Characteristics

Applies to Object: reaction
Data type boolean

Data values true, false. Default value is false.
Access Read/write

Examples

Create a model, add a reaction, and assign the expression for the reaction rate equation.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Set the Reversible property for the reactionObj to true and verify this setting.

set (reactionObj, 'Reversible', true)

get (reactionObj, 'Reversible')



3 Properties — Alphabetical List

3-170

MATLAB returns:

ans =

     1

MATLAB returns 1 for true and 0 for false.

In the next steps the example illustrates how the reaction rate equation is assigned
for reversible reactions.

3 Create a kinetic law object for the reaction object of the type 'MassAction'.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

reactionObj KineticLaw property is configured to kineticlawObj.
4 The 'MassAction' kinetic law for reversible reactions has two parameter variables

('Forward Rate Parameter' and 'Reverse Rate Parameter') that you should
set. The species variables for MassAction are automatically determined. To set
the parameter variables, first create the parameter variables as parameter objects
(parameterObj1, parameterObj2) named Kf and Kr and assign the object to
kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Kf');

parameterObj2 = addparameter(kineticlawObj, 'Kr');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Kf' 'Kr'});

6 Verify that the reaction rate is expressed correctly in the reaction object
ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Kf*a*b - Kr*c*d



 Reversible

3-171

See Also

addparameter, addreactant, addreaction, ParameterVariableNames,
ReactionRate



3 Properties — Alphabetical List

3-172

Rule
Specify species and parameter interactions

Description

The Rule property contains a rule that defines how certain species and parameters
should interact with one another. For example, a rule could state that the total number
of species A and species B must be some value. Rule is a MATLAB expression that
defines the change in the species object quantity or a parameter object Value when the
rule is evaluated.

You can add a rule to a model object with the addrule method and remove the rule with
the delete method. For more information on rules, see addrule and RuleType.

Note: If you set the Rule property for an algebraic rule, rate rule, or repeated
assignment rule, and the rule expression is not continuous and differentiable, see
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” before
simulating your model.

Characteristics

Applies to Object: rule
Data type char string

Data values char string defined as species or parameter objects.
Default is empty.

Access Read/write

Examples

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');



 Rule

3-173

2 Add a rule.

ruleObj = addrule(modelObj, '10-a+b')

MATLAB returns:

SimBiology Rule Array

Index:    RuleType:    Rule:

1         algebraic    10-a+b

See Also

addrule, delete, “Definitions and Evaluations of Rules”



3 Properties — Alphabetical List

3-174

RuleType
Specify type of rule for rule object

Description

The RuleType property indicates the type of rule defined by the rule object. A Rule
object defines how certain species, parameters, and compartments should interact with
one another. For example, a rule could state that the total number of species A and
species B must be some value. Rule is a MATLAB expression that defines the change in
the species object quantity or a parameter object Value when the rule is evaluated.

You can add a rule to a model object with the addrule method and remove the rule with
the delete method. For more information on rules, see addrule.

The types of rules in SimBiology are as follows:

• initialAssignment — Lets you specify the initial value of a parameter, species, or
compartment capacity, as a function of other model component values in the model.

• repeatedAssignment — Lets you specify a value that holds at all times during
simulation, and is a function of other model component values in the model.

• algebraic — Lets you specify mathematical constraints on one or more parameters,
species, or compartments that must hold during a simulation.

• rate — Lets you specify the time derivative of a parameter value, species amount, or
compartment capacity.

Constraints on Varying Species Using a Rate Rule

If the model has a species defined in concentration, being varied by a rate rule, and it is
in a compartment with varying volume, you can only use rate or initialAssignment
rules to vary the compartment volume.

Conversely, if you are varying a compartment's volume using a repeatedAssignment or
algebraic rules, then you cannot vary a species (defined in concentration) within that
compartment, with a rate rule.

The reason for these constraints is that, if a species is defined in concentration and it is
in a compartment with varying volume, the time derivative of that species is a function of



 RuleType

3-175

the compartment's rate of change. For compartments varied by rate rules, the solver has
that information.

Note that if you specify the species in amounts there are no constraints.

Characteristics

Applies to Object: rule
Data type char string

Data values 'initialAssignment',
'repeatedAssignment''algebraic', 'rate'. Default
value is 'initialAssignment'.

Access Read/write

Examples

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule that specifies the quantity of a species c. In the rule expression, k is the
rate constant for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')

3 Change the RuleType from the default ('algebraic') to 'rate' and verify it
using the get command.

set(ruleObj, 'RuleType', 'rate');

get(ruleObj)

MATLAB returns all the properties for the rule object.

    Active: 1

Annotation: ''

      Name: ''

     Notes: ''

    Parent: [1x1 SimBiology.Model]

      Rule: 'c = k*(a+b)'



3 Properties — Alphabetical List

3-176

  RuleType: 'rate'

       Tag: ''

      Type: 'rule'

  UserData: []

See Also

“Definitions and Evaluations of Rules” in the SimBiology User's Guide, addrule,
delete



 Rules

3-177

Rules
Array of rules in model object

Description

The Rules property shows the rules in a Model object. Read-only array of
SimBiology.Rule objects.

A rule is a mathematical expression that modifies a species amount or a parameter
value. A rule defines how certain species and parameters should interact with one
another. For example, a rule could state that the total number of species A and species B
must be some value.

You can add a rule to a model object with the addrule method and remove the rule with
the delete method. For more information on rules, see addrule and RuleType.

Characteristics

Applies to Object: model
Data type Array of rule objects
Data values Rule object
Access Read-only

Examples

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Add a rule.

ruleobj = addrule(modelObj, '10-a+b')

MATLAB returns:



3 Properties — Alphabetical List

3-178

SimBiology Rule Array

Index:    RuleType:    Rule:

 1        algebraic    10-a+b

See Also

addrule, delete, “Definitions and Evaluations of Rules”



 RunInfo

3-179

RunInfo

Information about simulation

Description

The RunInfo property contains information describing the simulation run that yielded
the data in the SimData object.

The following information is stored:

• Configset — A struct form of the configuration set used during simulation. This
would typically be the model’s active configset.

• Variant — A struct form of the variant(s) used during simulation.
• SimulationDate — The date/time of simulation.
• SimulationType — Either 'single run' or 'ensemble run', depending on

whether the data object was created using the function sbiosimulate or the
function sbioensemblerun.

Characteristics

Applies to Object: SimData
Data type struct

Data values Default values are as follows:

ConfigSet: []  

SimulationDate: '' 

SimulationType: ''

Variant: []

In practice, the ConfigSet, SimulationDate, and
SimulationType fields are rarely empty, since they
are populated after simulation.

Access Read-only



3 Properties — Alphabetical List

3-180

See Also

StopTime



 RuntimeOptions

3-181

RuntimeOptions
Options for logged species

Description

The RuntimeOptions property holds options for species that will be logged during the
simulation run. The run-time options object can be accessed through this property.

The LogDecimation property of the configuration set object defines how often data is
logged.

Property Summary

StatesToLog Specify species, compartment, or parameter
data recorded

Type Display SimBiology object type

Characteristics

Applies to Object: configset
Data type Object
Data values Run-time options
Access Read-only

Examples

1 Create a model object, and retrieve its configuration set.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);

2 Retrieve the RuntimeOptions object from the configset object.



3 Properties — Alphabetical List

3-182

runtimeObj = get(configsetObj, 'RunTimeOptions')

Runtime Settings:

     StatesToLog:          all

See Also

get, set



 SensitivityAnalysis

3-183

SensitivityAnalysis

Enable or disable sensitivity analysis

Description

SensitivityAnalysis is a property of the SolverOptions property, which is a
property of a configset object. This property lets you compute the time-dependent
sensitivities of all the species states defined by the StatesToLog property with respect
to the Inputs that you specify in the SensitivityAnalysisOptions property of the
configuration set object.

SensitivityAnalysis is available only for the ODE solvers (ode15s, ode23t, ode45,
and sundials)

Note: Models containing the following active components do not support sensitivity
analysis:

• Nonconstant compartments
• Algebraic rules
• Events

For more information on setting up sensitivity analysis, see
SensitivityAnalysisOptions . For a description of sensitivity analysis calculations,
see “Sensitivity Calculation”.

Characteristics

Applies to Object: SolverOptions
Data type logical

Data values 1, 0, true, false. Default is false.
Access Read/write



3 Properties — Alphabetical List

3-184

Examples

This example shows how to enable SensitivityAnalysis.

1 Retrieve the configset object from the modelObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);

2 Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true);

get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

  on

See Also

SensitivityAnalysisOptions, SolverOptions, SolverType, StatesToLog



 SensitivityAnalysisOptions

3-185

SensitivityAnalysisOptions
Specify sensitivity analysis options

Description

The SensitivityAnalysisOptions property is an object that holds the sensitivity
analysis options in the configuration set object. Sensitivity analysis is supported only for
deterministic (ODE) simulations.

Note: The SensitivityAnalysisOptions property controls the settings
related to sensitivity analysis. To enable or disable sensitivity analysis, use the
SensitivityAnalysis property.

Properties of SensitivityAnalysisOptions are summarized in “Property Summary”
on page 3-186.

When sensitivity analysis is enabled, the following command

[t,x,names] = sbiosimulate(modelObj)

returns [t,x,names], where

• t is an n-by-1 vector, where n is the number of steps taken by the ode solver and t
defines the time steps of the solver.

• x is an n-by-m matrix, where n is the number of steps taken by the ode solver and m
is:
Number of species and parameters specified in StatesToLog + 

(Number of sensitivity outputs * Number of sensitivity input factors)

A SimBiology state includes species and nonconstant parameters.
• names is the list of states logged and the list of sensitivities of the species specified in

StatesToLog with respect to the input factors.

For an example of the output, see “Examples” on page 3-186.

You can add a number of configuration set objects with different
SensitivityAnalysisOptions to the model object with the addconfigset method.



3 Properties — Alphabetical List

3-186

Only one configuration set object in the model object can have the Active property set to
true at any given time.

Property Summary

Inputs Specify species and parameter input factors
for sensitivity analysis

Normalization Specify normalization type for sensitivity
analysis

Outputs Specify species and parameter outputs for
sensitivity analysis

Characteristics

Applies to Object: configuration set
Data type Object
Data values SensitivityAnalysisOptions properties as

summarized in “Property Summary” on page 3-186.
Access Read-only

Examples

This example shows how to set SensitivityAnalysisOptions.

1 Import the radio decay model from SimBiology demos.

modelObj  = sbmlimport('radiodecay');

2 Retrieve the configuration settings and the sensitivity analysis options from
modelObj.

configsetObj = getconfigset(modelObj);

sensitivityObj = get(configsetObj, 'SensitivityAnalysisOptions');

3 Add a species and a parameter to the Inputs property. Use the sbioselect
function to retrieve the species and parameter objects from the model.



 SensitivityAnalysisOptions

3-187

4 Add a species to the Outputs property and display.

SimBiology Species Array

   Index:    Compartment:    Name:    InitialAmount:    InitialAmountUnits:

   1         unnamed         z        0                 molecule

5 Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true);

get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

  1

6 Simulate and return the results to three output variables. See “Description” on page
3-185 for more information.

[t,x,names] = sbiosimulate(modelObj);

7 Display the names.

names

names = 

    'x'

    'z'

    'd[z]/d[z]_0'

    'd[z]/d[Reaction1.c]'

Display state values x.

x

The display follows the column order shown in names for the values in x. The rows
correspond to t.

See Also

addconfigset, getconfigset, SensitivityAnalysis



3 Properties — Alphabetical List

3-188

SolverOptions
Specify model solver options

Description

The SolverOptions property is an object that holds the model solver options in the
configset object. Changing the property SolverType changes the options specified in
the SolverOptions object.

Properties of SolverOptions are summarized in “Property Summary” on page 3-188.

Property Summary

AbsoluteTolerance Absolute error tolerance applied to state
value during simulation

AbsoluteToleranceScaling Control scaling of absolute error tolerance
during simulation

AbsoluteToleranceStepSize Initial guess for time step size for scaling of
absolute error tolerance

ErrorTolerance Specify explicit or implicit tau error
tolerance

LogDecimation Specify frequency to log stochastic
simulation output

MaxIterations Specify nonlinear solver maximum
iterations in implicit tau

MaxStep Specify upper bound on ODE solver step
size

OutputTimes Specify times to log deterministic
simulation output

RandomState Set random number generator
RelativeTolerance Allowable error tolerance relative to state

value during a simulation
SensitivityAnalysis Enable or disable sensitivity analysis



 SolverOptions

3-189

Type Display SimBiology object type

Characteristics

Applies to Object: configset
Data type Object
Data values Solver options depending on SolverType. Default is SolverOptions

for default SolverType (ode15s).
Access Read-only

Examples

This example shows the changes in SolverOptions for various SolverType settings.

1 Retrieve the configset object from the modelObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45');

get(configsetObj, 'SolverOptions')

Solver Settings: (ode)

     AbsoluteTolerance:    1.000000e-006

     RelativeTolerance:    1.000000e-003

3 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa');

get(configsetObj, 'SolverOptions')

Solver Settings: (ssa)

     LogDecimation:        1

     RandomState:          []



3 Properties — Alphabetical List

3-190

4 Configure the SolverType to impltau.

set(configsetObj, 'SolverType', 'impltau');

get(configsetObj, 'SolverOptions')

Solver Settings: (impltau)

     ErrorTolerance:       3.000000e-002

     LogDecimation:        1

     AbsoluteTolerance:    1.000000e-002

     RelativeTolerance:    1.000000e-002

     MaxIterations:        15

     RandomState:          []

5 Configure the SolverType to expltau.

set(configsetObj, 'SolverType', 'expltau');

get(configsetObj, 'SolverOptions')

Solver Settings: (expltau)

     ErrorTolerance:       3.000000e-002

     LogDecimation:        1

     RandomState:          []

See Also

addconfigset, getconfigset



 SolverType

3-191

SolverType
Select solver type for simulation

Description

The SolverType property lets you specify the solver to use for a simulation. For a
discussion about solver types, see “Choosing a Simulation Solver”.

Changing the solver type changes the options (properties) specified in the
SolverOptions property of the configset object. If you change any SolverOptions,
these changes are persistent when you switch SolverType. For example, if you set the
ErrorTolerance for the expltau solver and then change to impltau when you switch
back to expltau, the ErrorTolerance will have the value you assigned.

Characteristics

Applies to Object: Configset
Data type enum

Data values 'ode15s', 'ode23t', 'ode45', 'sundials', 'ssa',
'expltau', 'impltau'. Default is 'ode15s'.

Note:

• If your model contains events, you cannot specify 'expltau'
or 'impltau' for the SolverType property.

• If your model contains doses, you cannot specify 'ssa',
'expltau', or 'impltau' for the SolverType property.

• If your model contains algebraic rules, you cannot use
'ode45'.

• Performing sensitivity analysis on a model always uses the
'sundials' solver, even if you have set the SolverType to a
different solver type.



3 Properties — Alphabetical List

3-192

Access Read/write

Examples

1 Retrieve the configset object from the modelObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)

     SolverType:                  ode15s

     StopTime:                    10.000000

   SolverOptions:

     AbsoluteTolerance:           1.000000e-006

     RelativeTolerance:           1.000000e-003

     SensitivityAnalysis:         false

   RuntimeOptions:

     StatesToLog:                 all

   CompileOptions:

     UnitConversion:              false

     DimensionalAnalysis:         true

   SensitivityAnalysisOptions:

     Inputs:                      0

     Outputs:                     0

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45')

configsetObj

   Configuration Settings - default (active)

     SolverType:                  ode45

     StopTime:                    10.000000

   SolverOptions:

     AbsoluteTolerance:           1.000000e-006

     RelativeTolerance:           1.000000e-003

     SensitivityAnalysis:         false



 SolverType

3-193

   RuntimeOptions:

     StatesToLog:                 all

   CompileOptions:

     UnitConversion:              false

     DimensionalAnalysis:         true

   SensitivityAnalysisOptions:

     Inputs:                      0

     Outputs:                     0

See Also

getconfigset, set



3 Properties — Alphabetical List

3-194

Species

Array of species in compartment object

Description

The Species property is a property of the compartment object and indicates all the
species in a compartment object. Species is a read-only array of SimBiology species
objects.

In the model object, Species contains a flat list of all the species that exist
within all the compartments in the model. You should always access a species
through its compartment rather than the model object. Use the format
compartmentName.speciesName, for example, nucleus.DNA. Another example of the
syntax is modelObj.Compartments(2).Species(1). The Species property in the
model object might not be available in a future version of the software.

Species are entities that take part in reactions. A species object is added to the Species
property when a reaction is added to the model object with the method addreaction. A
species object can also be added to the Species property with the method addspecies.

If you remove a reaction with the method delete, and a species is no longer being used
by any of the remaining reactions, the species object is not removed from the Species
property. You have to use the delete method to remove species.

There are reserved characters that cannot be used in species object names. See Name for
more information.

Characteristics

Applies to Object: compartment
Data type Array of species objects
Data values Species object. Default is [] (empty).
Access Read-only



 Species

3-195

See Also

addcompartment, addreaction, addspecies, delete



3 Properties — Alphabetical List

3-196

SpeciesVariableNames
Cell array of species in reaction rate equation

Description

The SpeciesVariableNames property shows the species used by the kinetic law object
to determine the ReactionRate equation in the reaction object. Use setspecies to
assign SpeciesVariableNames. When you assign species to SpeciesVariableNames,
SimBiology software maps these species names to SpeciesVariables in the kinetic law
object.

The ReactionRate property of a reaction object shows the result of a mapping
from kinetic law definition. The ReactionRate is determined by the kinetic
law object Expression property by mapping ParameterVariableNames to
ParameterVariables and SpeciesVariableNames to SpeciesVariables.

Characteristics

Applies to Object: kinetic law
Data type Cell array of strings
Data values Cell array of species names
Access Read/write

Examples

Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction
rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-
Menten'



 SpeciesVariableNames

3-197

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

The reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has one species variable (S) that you

should set. To set this variable:

setspecies(kineticlawObj,'S', 'a');

4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns:

ans = 

'a'

See Also

Expression(AbstractKineticLaw, KineticLaw), ParameterVariables,
ParameterVariableNames, ReactionRate, setparameter, SpeciesVariables



3 Properties — Alphabetical List

3-198

SpeciesVariables
Species in abstract kinetic law

Description

This property shows species variables that are used in the Expression property of the
kinetic law object to determine the ReactionRate equation in the reaction object. Use
the MATLAB function set to assign SpeciesVariables to an abstract kinetic law. For
more information, see abstract kinetic law.

Characteristics

Applies to Objects: abstract kinetic law, kineticlaw
Data type Cell array of strings
Data values Defined by abstract kinetic law
Access Read/write in abstract kinetic law. Read-

only in kinetic law.

Examples

Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction
rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-
Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 View the species variable for'Henri-Michaelis-Menten' kinetic law.



 SpeciesVariables

3-199

get (kineticlawObj, 'SpeciesVariables')

MATLAB returns:

ans = 

    'S'

See Also

Expression(AbstractKineticLaw, KineticLaw), ParameterVariables,
ParameterVariableNames, ReactionRate, set, setparameter,
SpeciesVariableNames



3 Properties — Alphabetical List

3-200

StartTime
Start time for initial dose time

Description

StartTime is a property of a RepeatDose object. For a series of repeated doses, the
StartTime property defines the amount of time that elapses before the first (initial) dose
is given.

Characteristics

Applies to Objects: RepeatDose
Data type double

Data values Nonnegative real number. Default value is 0
Access Read-write

See Also

RepeatDose object



 StatesToLog

3-201

StatesToLog
Specify species, compartment, or parameter data recorded

Description

The StatesToLog property specifies the species, compartment, or parameter data to
log during a simulation. This is the data returned in x during execution of [t,x] =
sbiosimulate(modelObj). By default, all species, nonconstant compartments, and
nonconstant parameters are logged.

If you specify a particular list of species, compartments, or parameters to be logged,
the order of the states in the result SimData after simulation is the same as the order
specified.

Characteristics

Applies to Object: RuntimeOptions
Data type String, cell array of strings, object or vector of objects
Data values Species objects, compartment objects, or parameter

objects. Default is all, which means all species objects, all
compartment objects whose ConstantCapacity = false, and
all parameter objects whose ConstantValue = false.

Access Read/write

Examples

Specify a List of Species to be Logged During Simulation

Load the Lotka-Volterra Model.

sbioloadproject lotka;

Get the configset object of the lotka model m1.



3 Properties — Alphabetical List

3-202

configset = getconfigset(m1);

Display the list of species whose data are logged by default during the simulation.

configset.RuntimeOptions.StatesToLog

   SimBiology Species Array

   Index:    Compartment:    Name:    InitialAmount:    InitialAmountUnits:

   1         unnamed         x        1                 

   2         unnamed         y1       900               

   3         unnamed         y2       900               

   4         unnamed         z        0                 

Suppose you want to log just species y1 and y2 data. You can specify their names as a
cell array of strings and set it to StatesToLog property.

configset.RuntimeOptions.StatesToLog = {'y1','y2'};

Confirm the setting.

configset.RuntimeOptions.StatesToLog

   SimBiology Species Array

   Index:    Compartment:    Name:    InitialAmount:    InitialAmountUnits:

   1         unnamed         y1       900               

   2         unnamed         y2       900               

Alternatively, you can specify an array of species objects (instead of strings) to
StatesToLog property.

y1 = m1.Species(2);

y2 = m1.Species(3);

configset.RuntimeOptions.StatesToLog = [y1, y2];

Simulate and plot the results. Notice that simulation results of only y1 and y2 are
plotted.

sbioplot(sbiosimulate(m1));



 StatesToLog

3-203

To reset to the default list, set StatesToLog to a string 'all'.

configset.RuntimeOptions.StatesToLog = 'all';

Simulate again. Notice all the species data are plotted.

sbioplot(sbiosimulate(m1));



3 Properties — Alphabetical List

3-204

Do not specify 'all' as a cell string such as {'all'}. If so, SimBiology interprets it as a
species named all.



 Stoichiometry

3-205

Stoichiometry
Species coefficients in reaction

Description

The Stoichiometry property specifies the species coefficients in a reaction. Enter an
array of doubles indicating the stoichiometry of reactants (negative value) and products
(positive value). Example: [-1 -1 2].

The double specified cannot be 0. The reactants of the reaction are defined with a
negative number. The products of the reaction are defined with a positive number. For
example, the reaction 3 H + A-> 2 C + F has the Stoichiometry value of [-3 -1 2 1].

When this property is configured, the Reaction property updates accordingly. In the
above example, if the Stoichiometry value was set to [-2 -1 2 3], the reaction is updated
to 2H + A -> 2C + 3F.

The length of the Stoichiometry array is the sum of the Reactants array and the
Products array. To remove a product or reactant from a reaction, use the rmproduct
or rmreactant function. Add a product or reactant and set stoichiometry with methods
addproduct and addreactant.

ODE solvers support double stoichiometry values such as 0.5. Stochastic solvers and
dimensional analysis currently support only integers in Stoichiometry, therefore you
must balance the reaction equation and specify integer values for these two cases.

A -> null has a stoichiometry value of [-1]. null -> B has a stoichiometry value of
[1].

Characteristics

Applies to Object: reaction
Data type Double array
Data values 1-by-n double, where n is length (products) + length

(reactants). Default is [ ] (empty).



3 Properties — Alphabetical List

3-206

Access Read/write

Examples

1 Create a reaction object.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, '2 a + 3 b -> d + 2 c');

2 Verify the Reaction and Stoichiometry properties for reactionObj.

get(reactionObj,'Stoichiometry')

MATLAB returns:

ans =

-2    -3     1     2

3 Set stoichiometry to [-1 -2 2 2].

set (reactionObj, 'Stoichiometry', [-1 -2 2 2]);

get (reactionObj, 'Stoichiometry')

MATLAB returns:

ans =

 -1    -2     2     2

4 Note with get that the Reaction property updates automatically.

get (reactionObj, 'Reaction')

MATLAB returns:

ans =

a + 2 b -> 2 d + 2 c

See Also

addproduct, addreactant, addreaction, Reaction, rmproduct, rmreactant



 StopTime

3-207

StopTime
Simulation time criteria to stop simulation

Description

StopTime is a property of a Configset object. This property sets the maximum
simulation time criteria to stop a simulation. Time units are specified by the TimeUnits
property of the Configset object.

A simulation stops when it meets any of the criteria specified by StopTime,
MaximumNumberOfLogs, or MaximumWallClock. However, if you specify the
OutputTimes property of the SolverOptions property of the Configset object,
then StopTime and MaximumNumberOfLogs are ignored. Instead, the last value in
OutputTimes is used as the StopTime criteria, and the length of OutputTimes is used
as the MaximumNumberOfLogs criteria.

Characteristics

Applies to Object: Configset
Data type double

Data values Nonnegative scalar. Default is 10.
Access Read/write

Examples

Set Simulation Time Criteria to Stop Simulation

1 Create a model object named cell and save it in a variable named modelObj.
Retrieve the configuration set from modelObj and save it in a variable named
configsetObj.

modelObj  = sbiomodel('cell');

configsetObj = getconfigset(modelObj);



3 Properties — Alphabetical List

3-208

2 Configure the simulation stop criteria by setting the StopTime property to 20
seconds. Leave the MaximumNumberOfLogsand MaximumWallClock properties at
their default values of Inf.

set(configsetObj, 'StopTime', 20)

get(configsetObj)

                        Active: 1

                CompileOptions: [1x1 SimBiology.CompileOptions]

                          Name: 'default'

                         Notes: ''

                RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

    SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]

                 SolverOptions: [1x1 SimBiology.ODESolverOptions]

                    SolverType: 'ode15s'

                      StopTime: 20

           MaximumNumberOfLogs: Inf

              MaximumWallClock: Inf

                     TimeUnits: 'second'

                          Type: 'configset'

When you simulate modelObj, the simulation stops when the simulation time
reaches 20 seconds.

See Also

Configset object, MaximumNumberOfLogs, MaximumWallClock, OutputTimes,
TimeUnits, MassUnits, AmountUnits



 Tag

3-209

Tag
Specify label for SimBiology object

Description

The Tag property specifies a label associated with a SimBiology object. Use this property
to group objects and then use sbioselect to retrieve. For example, use the Tag
property in reaction objects to group synthesis or degradation reactions. You can then
retrieve all synthesis reactions using sbioselect. Similarly, for species objects you can
enter and store classification information, for example, membrane protein, transcription
factor, enzyme classifications, or whether a species is an independent variable. You can
also enter the full form of the name of the species.

Characteristics

Applies to Objects: abstract kinetic law, kinetic law, model, parameter,
reaction, RepeatDose, rule, ScheduleDose, species

Data type char string

Data values Any char string
Access Read/write

Examples

1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add a reaction object and set the Tag property to 'Synthesis Reaction'.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

set (reactionObj, 'Tag', 'Synthesis Reaction')

3 Verify the Tag assignment.

get (reactionObj, 'Tag');



3 Properties — Alphabetical List

3-210

MATLAB returns:

ans =

     'Synthesis Reaction'

See Also

addkineticlaw, addparameter, addreaction, addrule, addspecies, RepeatDose
object, sbioabstractkineticlaw, sbiomodel, sbioroot, ScheduleDose object



 TargetName

3-211

TargetName
Species receiving dose

Description

TargetName is a property of a RepeatDose or ScheduleDose object. This property
defines the SimBiology species receiving the dose. The dose amount increases the species
amount at each time interval defined by a repeat dose or at each time point defined by a
schedule dose.

The value of TargetName is the name of a species. If the model has more than one
species with the same name, TargetName is defined as compartmentName.speciesName,
where compartmentName is the name of the compartment containing the species.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose
Data type string

Data values Species name. Default value is '' (empty).
Access Read/Write

See Also

ScheduleDose object and RepeatDose object



3 Properties — Alphabetical List

3-212

Trigger

Event trigger

Description

Trigger is a property of an Event object

A Trigger is a condition that must become true for an event to execute. You can use a
combination of relational and logical operators to build a trigger expression. Trigger can
be a string, an expression, or a function handle that when evaluated returns a value of
true or false. A Trigger can access species, parameters, and compartments.

A trigger can contain the keyword time and relational operators to trigger an event
that occurs at a specific time during the simulation. For example, time >= x. In this
example trigger, note that:

• The units associated with the keyword time are the units for the TimeUnits
property for the Configset object associated with the simulation.

• If x is an expression containing compartments, species, or parameters, then any units
associated with the expression must have the same dimensions as the keyword time.

• If x is a raw number, then its dimensions (and units, if unit conversion is on) are
assumed to be the same as the keyword time.

For more information about how the SimBiology software handles events, see “How
Events Are Evaluated”. For examples of event functions, see “Specifying Event Triggers”.

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger x > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does
not have to have the same unit as the constant x0, but must be dimensionally consistent
with it. For example, the unit of x can be picomole/liter instead of mole/liter.



 Trigger

3-213

Characteristics

Applies to Object: event
SimBiology type String, function handle
SimBiology values Specify a MATLAB expression as a string. Default is ''

(empty string).
Access Read/write

Examples

1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator');

eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Set the Trigger property of the event object.

set(eventObj, 'Trigger', '(time >=5) && (speciesA<1000)');

3 Get the Trigger property.

get(eventObj, 'Trigger')

See Also

Event object, EventFcns



3 Properties — Alphabetical List

3-214

Time
Simulation time steps or schedule dose times

Description

Time is a property of a SimData or ScheduleDose object.

SimData Object

For a simulation, the Time property records the time steps.

ScheduleDose Object

For a series of scheduled doses, the Time property defines the times to give a dose.

A ScheduleDose object defines a series of doses. Each dose can have a different amount,
as defined by an amount array in the Amount property, and given at specified times, as
defined by a time array in the Time property. A rate array in the Rate property defines
how fast each dose is given. At each time point in the time array, a dose is given with the
corresponding amount and rate.

Characteristics

Applies to Objects: SimData, ScheduleDose
Data type double (SimData), double array (ScheduleDose)
Data values Vector of doubles (SimData)

Array of nonnegative real numbers. Default value is []
(ScheduleDose)

Access Read-only

See Also

ScheduleDose object, SimData object, StopTime



 TimeUnits

3-215

TimeUnits
Show time units for dosing and simulation

Description

The TimeUnits property specifies time units for these properties:

• StopTime property of a Configset object
• OutputTimes and AbsoluteToleranceStepSize properties of the

SolverOptions property of a Configset object
• StartTime and Interval properties of a RepeatDose object
• Time property of a ScheduleDose object
• Time property of a SimData object

Note: If you change the value of the TimeUnits property, make sure:

• You update the values of the Time, StartTime, Interval, StopTime, and
OutputTimes properties accordingly.

• You update raw numbers used in any event triggers that use the keyword time
accordingly. For more information, see Trigger.

• The units, if any, associated with expressions used in any event triggers that use
the keyword time, are consistent with the updated TimeUnits property. For more
information, see Trigger.

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger x > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does
not have to have the same unit as the constant x0, but must be dimensionally consistent
with it. For example, the unit of x can be picomole/liter instead of mole/liter.



3 Properties — Alphabetical List

3-216

Characteristics

Applies to Objects: Configset, RepeatDose, ScheduleDose, SimData
Data type string

Data values Empty string or a string specifying any unit defined in the Units
Library.

Default value is:

• second — properties of a Configset object or SimData object for a
model object created using sbiomodel

• hour — properties of a Configset object or SimData object for a
model object created from a PKModelDesign object

• '' (empty string) — properties of RepeatDose and ScheduleDose
objects

Access Read/write for properties of Configset, RepeatDose, and
ScheduleDose objects

Read only for properties of SimData objects

See Also

Configset object, RepeatDose object, ScheduleDose object, SimData
object, Interval, OutputTimes, StartTime, StopTime, Time, MassUnits,
AmountUnits



 Type

3-217

Type
Display SimBiology object type

Description

The Type property indicates a SimBiology object type. When you create a SimBiology
object, the value of Type is automatically defined.

For example, when a Species object is created, the value of the Type property is
automatically defined as 'species'.

Characteristics

Applies to Objects: abstract kinetic law, compartment, configuration
set, CompileOptions, event, kinetic law, model, parameter,
reaction, RepeatDose, root, rule, ScheduleDose, species,
RuntimeOptions, SolverOptions, unit, unitprefix, and
variant

Data type char string

Data values abstract_kinetic_law, compartment, configset,
compileoptions, event, kineticlaw, parameter,
reaction, repeatdose, root, rule, runtimeoptions,
sbiomodel, scheduledose, species, solveroptions,
unit, unitprefix, and variant

Access Read-only

See Also

RepeatDose object, sbiomodel, sbioroot, ScheduleDose object,
setactiveconfigset



3 Properties — Alphabetical List

3-218

UnitConversion
Perform unit conversion

Description

The UnitConversion property specifies whether to perform unit conversion
for the model before simulation. It is a property of the CompileOptions object.
CompileOptions holds the model's compile time options and is the object property of the
configset object.

When UnitConversion is set to true, the SimBiology software converts the matching
physical quantities to one consistent unit system in order to resolve them. This
conversion is in preparation for correct simulation, but species amounts are returned in
the user-specified units.

For example, consider a reaction a + b —> c. Using mass action kinetics the
reaction rate is defined as a*b*k where k is the rate constant of the reaction. If you
specify that initial amounts of a and b are 0.01M and 0.005M respectively, then units
of k are 1/(M*second). If you specify k with another equivalent unit definition,
for example, 1/((molecules/liter)*second), UnitConversion occurs after
DimensionalAnalysis.

Unit conversion requires dimensional analysis. If DimensionalAnalysis is off,
and you turn UnitConversion on, then DimensionalAnalysis is turned on
automatically. If UnitConversion is on and you turn off DimensionalAnalysis, then
UnitConversion is turned off automatically.

If UnitConversion fails, then you see an error when you simulate (sbiosimulate).

If UnitConversion is set to false, the simulation uses the given object values.

Unit conversion involving temperature supports Celsius as the temperature unit. Avoid
using mixed temperature units as you might get an error.

Characteristics

Applies to Object: CompileOptions (in configset object)



 UnitConversion

3-219

Data type boolean

Data values true or false. Default value is false.
Access Read/write

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to
consistent units. Hence, you must specify consistent units, and no unit strings can
be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

Tip If you have a custom function and UnitConversion is on, follow the
recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not
already dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in
hour and y is the concentration of a species in mole/liter. When you use this function
in your model to define a repeated assignment rule for instance, define it as: s1 =
f(time/t0)*s0, where time is the simulation time, t0 is a parameter defined as
1.0 hour, s0 is a parameter defined as 1.0 mole/liter, and s1 is the concentration of
a species in mole/liter. Note that time and s1 do not have to be in the same units as
t0 and s0, but they must be dimensionally consistent. For example, the time and s1
units can be set to minute and picomole/liter, respectively.



3 Properties — Alphabetical List

3-220

Examples

This example shows how to retrieve and set unitconversion from the default true to
false in the default configuration set in a model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator 

   Model Components:

     Models:            0

     Parameters:        0

     Reactions:         42

     Rules:             0

     Species:           23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

 Configuration Settings - default (active)

     SolverType:           ode15s

     StopTime:             10.000000

   SolverOptions:

     AbsoluteTolerance:    1.000000e-006

     RelativeTolerance:    1.000000e-003

   RuntimeOptions:

     StatesToLog:          all

   CompileOptions:

     UnitConversion:       false

     DimensionalAnalysis:  true

3 Retrieve the CompileOptions object.

optionsObj = get(configsetObj,'CompileOptions')

Compile Settings:

     UnitConversion:       false

     DimensionalAnalysis:  true



 UnitConversion

3-221

4 Assign a value of false to UnitConversion.

 set(optionsObj,'UnitConversion', true)

See Also

get, getconfigset, sbiosimulate, set



3 Properties — Alphabetical List

3-222

UserData
Specify data to associate with object

Description

Property to specify data that you want to associate with a SimBiology object. The object
does not use this data directly, but you can access it using the function get or dot
notation.

Characteristics

Applies to Objects: abstract kinetic law, configuration set, compartment,
data, event, kinetic law, model, parameter, reaction,
RepeatDose, rule, ScheduleDose, species, or unit

Data type Any
Data values Any. Default is empty.
Access Read/write

See Also

RepeatDose object, sbioabstractkineticlaw, sbiomodel, sbioroot, sbiounit,
sbiounitprefix, ScheduleDose object



 UserDefinedLibrary

3-223

UserDefinedLibrary
Library of user-defined components

Description

UserDefinedLibrary is a SimBiology root object property containing all user-defined
components of unit, unit prefixes, and kinetic laws that you define. You can add, modify,
or delete components in the user-defined library. The UserDefinedLibrary property is
an object that contains the following properties:

• Units — Contains any user-defined units. You can specify units for compartment
capacity, species amounts and parameter values, to do dimensional analysis and unit
conversion during simulation. You can display the user-defined units either by using
the command sbiowhos -userdefined -unit, or by accessing the root object.

• UnitPrefixes — Contains any user-defined unit prefixes. You can specify unit
prefixes in combination with a valid unit for compartment capacity, species amounts
and parameter values, to do dimensional analysis and unit conversion during
simulation. You can display the user-defined unit prefixes either by using the
command sbiowhos -userdefined -unitprefix, or by accessing the root object.

• KineticLaws — Contains any user-defined kinetic laws. Use the command
sbiowhos -userdefined -kineticlaw to see the list of user-defined kinetic laws.
You can use user-defined kinetic laws when you use the command addkineticlaw
to create a kinetic law object for a reaction object. Refer to the kinetic law by
name when you create the kinetic law object, for example, kineticlawObj =
addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');.

See “Kinetic Law Definition” on page 3-76 for a definition and more information.

Characteristics

Applies to Object: root
Data type object
Data values Unit, unit prefix, and abstract kinetic law objects
Access Read-only



3 Properties — Alphabetical List

3-224

Characteristics for UserDefinedLibrary properties:

• Units

Applies to UserDefinedLibrary property
Data type Unit objects
Data values Units
Access Read/write

• UnitPrefixes

Applies to UserDefinedLibrary property
Data type Unit prefix objects
Data values Unit prefixes
Access Read/write

• KineticLaws

Applies to UserDefinedLibrary property
Data type Abstract kinetic law object
Data values Kinetic laws
Access Read/write

Examples

Example 1

This example uses the command sbiowhos to show the current list of user-defined
components.

sbiowhos -userdefined -kineticlaw

sbiowhos -userdefined -unit

sbiowhos -userdefined -unitprefix



 UserDefinedLibrary

3-225

Example 2

This example shows the current list of user-defined components by accessing the root
object.

rootObj = sbioroot;

get(rootObj.UserDefinedLibrary, 'KineticLaws')

get(rootObj.UserDefinedLibrary, 'Units')

get(rootObj.UserDefinedLibrary, 'UnitPrefixes')

See Also

BuiltInLibrary, sbioaddtolibrary, sbioremovefromlibrary, sbioroot,
sbiounit, sbiounitprefix



3 Properties — Alphabetical List

3-226

Value

Assign value to parameter object

Description

The Value property is the value of the parameter object. The parameter object defines
an assignment that can be used by the model object and/or the kinetic law object. Create
parameters and assign Value using the method addparameter.

Characteristics

Applies to Object: parameter
Data type double

Data values Any double. Default value is 1.0.
Access Read/write

Examples

Assign a parameter with a value to the model object.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

2 Add a parameter to the model object (modelObj) with Value 0.5.

parameterObj1 = addparameter (modelObj, 'K1', 0.5)

MATLAB returns:

SimBiology Parameter Array

Index:    Name:    Value:    ValueUnits:

 1         K1       0.5         



 Value

3-227

See Also

addparameter



3 Properties — Alphabetical List

3-228

ValueUnits
Parameter value units

Description

The ValueUnits property indicates the unit definition of the parameter object Value
property. ValueUnits can be one of the built-in units. To get a list of the built-
in units, use the sbioshowunits function. If ValueUnits changes from one unit
definition to another, the Value does not automatically convert to the new units. The
sbioconvertunits function does this conversion.

You can add a parameter object to a model object or a kinetic law object.

Characteristics

Applies to Object: parameter
Data type char string

Data values Unit from units library. Default is '' (empty string). Note
that the default value of an empty string means unspecified.
Unspecified units are permitted during dimensional
analysis, but not during unit conversion. (Use the string
'dimensionless' to specify dimensionless units.)

Access Read/write

Note: SimBiology uses unit strings including empty units in association with
DimensionalAnalysis and UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, unit strings
are not used. However, SimBiology still performs a minimum level of dimensional
analysis to decide whether a reaction rate is in dimensions of amount/time or
concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not
empty) must have consistent dimensions so that SimBiology can perform dimensional
analysis. However, the units are not converted.



 ValueUnits

3-229

• When UnitConversion is set to true (which requires DimensionalAnalysis to
be true), SimBiology performs a dimensional analysis and converts everything to
consistent units. Hence, you must specify consistent units, and no unit strings can
be empty. If you have a dimensionless parameter, you must still set its unit string to
dimensionless.

Examples

Assign a parameter with a value to the model object.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

2 Add a parameter with Value 0.5, and assign it to the model object (modelObj).

parameterObj1 = addparameter(modelObj, 'K1', 0.5, 'ValueUnits', '1/second')

MATLAB returns:

SimBiology Parameter Array

Index:    Name:    Value:    ValueUnits:

 1         K1       0.5       1/second

See Also

addparameter, sbioconvertunits, sbioshowunits



3 Properties — Alphabetical List

3-230

ZeroOrderDurationParameter
Zero-order dose absorption duration

Description

ZeroOrderDurationParameter is a property of the PKModelMap object. It specifies
the name(s) of parameter object(s) that represent the duration of absorption when the
DosingType property is ZeroOrder.

Specify the name(s) of parameter object(s) that are:

• Scoped to a model
• Constant, that is, their ConstantValue property is true

When dosing multiple compartments, a one-to-one relationship must exist between the
number and order of elements in the ZeroOrderDurationParameter property and the
DosingType property. For a dose that is not dosed with zero-order kinetics, use '' (an
empty string). For an example, see “Dosing Multiple Compartments in a Model”.

Characteristics

Applies to Object: PKModelMap
Data type char string or cell array of strings

Tip If you are not using any zero-order doses, you can set this
property to a cell array of empty strings, or simply an empty
cell array.

Data values Name of a parameter object or empty. Default is an empty
cell array.

The parameter object(s) must be:

• Scoped to a model
• Constant, that is, have a ConstantValue property set to

true



 ZeroOrderDurationParameter

3-231

Access Read/write

See Also

“Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” in the SimBiology User's Guide, DosingType, PKModelMap object




